Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40136 by maxmathsup by imad last updated on 16/Jul/18

let A_n = ∫_0 ^1  x^n  e^(−x) dx  1) calculate A_1    and A_2   2) prove that   A_(n+1) =(n+1)A_n  −(1/e)  3) calculate A_3    , A_4 , and A_5   4) calculate I = ∫_0 ^1 (−x^3  +2x^(2 )  −x)e^(−x)  dx

letAn=01xnexdx1)calculateA1andA22)provethatAn+1=(n+1)An1e3)calculateA3,A4,andA54)calculateI=01(x3+2x2x)exdx

Answered by math khazana by abdo last updated on 21/Jul/18

1) A_1 = ∫_0 ^1  x e^(−x) dx =[−xe^(−x) ]_0 ^1  +∫_0 ^1   e^(−x) dx  =−e^(−1)   +[−e^(−x) ]_0 ^1 =−e^(−1)  +1−e^(−1) =1−2e^(−1)   A_1 =1−(2/e)  A_2 = ∫_0 ^1  x^2  e^(−x) dx =[−x^2 e^(−x) ]_0 ^1  +∫_0 ^1  2x e^(−x) dx  =−e^(−1)  +2A_1 =−e^(−1)  +2(1−(2/e) )=−e^(−1) +2−(4/e)  A_2 =2−(5/e)  2) by parts u^′ =x^n    and v=e^(−x)  ⇒  A_n =[(1/(n+1))x^(n+1)  e^(−x) ]_0 ^1  +∫_0 ^1  (x^(n+1) /(n+1)) e^(−x) dx  = (1/((n+1)e))  +(1/(n+1)) A_(n+1)  ⇒  (n+1)A_n = (1/e) +A_(n+1)  ⇒  A_(n+1) =(n+1)A_n  −(1/e)  3) A_3 =3A_2  −(1/e) =3(2−(5/e))−(1/e)  A_3 = 6−((16)/e)  A_4 =4A_3  −(1/e) =4{6−((16)/e)}−(1/e)  A_4  =24 −((65)/e)  A_5 = 5A_4  −(1/e) =5{24−((65)/e)}−(1/e)  =120 −((5.65+1)/e) =120−((326)/e)

1)A1=01xexdx=[xex]01+01exdx=e1+[ex]01=e1+1e1=12e1A1=12eA2=01x2exdx=[x2ex]01+012xexdx=e1+2A1=e1+2(12e)=e1+24eA2=25e2)bypartsu=xnandv=exAn=[1n+1xn+1ex]01+01xn+1n+1exdx=1(n+1)e+1n+1An+1(n+1)An=1e+An+1An+1=(n+1)An1e3)A3=3A21e=3(25e)1eA3=616eA4=4A31e=4{616e}1eA4=2465eA5=5A41e=5{2465e}1e=1205.65+1e=120326e

Terms of Service

Privacy Policy

Contact: info@tinkutara.com