All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35049 by math khazana by abdo last updated on 14/May/18
letAn=∫1nn(1+1x2)arctanxdx1)calculateAn2)findlimn→+∞An
Commented by abdo mathsup 649 cc last updated on 16/May/18
1)letintegratebypartsu′=1+1x2andv=arctanxAn=[(1−1x)arctanx]1nn−∫1nn(1−1x)dx1+x2=(1−1n)arctan(n)−(1−n)arctan(1n)−∫1nndx1+x2+∫1nndxx(1+x2)but∫1nndx1+x2=arctan(n)−arctan(1n)∫1nn1x(1+x2)dx=∫1nn(1x−x1+x2)dx=ln(n)−ln(1n)−12[ln(1+x2)]1nn=2ln(n)−12{ln(1+n2)−ln(1+1n2)}⇒An=(1−1n)arctan(n)−(1−n)arctan(1n)−arctan(n)+arctan(1n)+2ln(n)−12(2ln(n))An=−arctan(n)n+narctan(1n)+π2−2arctan(n)+ln(n)2)wehavelimn→+∞(−arctan(n)n+narctan(1n)+π2−2arctsn(n))=0+1−π2−πbutlimn→+∞ln(n)=+∞⇒limn→+∞An=+∞.
Answered by MJS last updated on 15/May/18
∫(1+1x2)arctan(x)dx==∫arctan(x)dx+∫arctan(x)x2dx=∫arctan(x)dx=[∫u′v=uv−∫uv′u′=1⇒u=xv=arctan(x)⇒v′=1x2+1]=xarctan(x)−∫xx2+1dx=[t=x2+1→dx=dt2x]=xarctan(x)−12∫1tdt==xarctan(x)−ln(t)2==xarctan(x)−ln(x2+1)2∫arctan(x)x2dx=[∫u′v=uv−∫uv′u′=1x2⇒u=−1xv=arctan(x)⇒v′=1x2+1]=−arctan(x)x+∫1x(x2+1)dx==−arctan(x)x+∫(1x−x2x2+1)dx=[sameasabove]=−arctan(x)x+ln(x)−ln(x2+1)2=xarctan(x)−ln(x2+1)2−arctan(x)x+ln(x)−ln(x2+1)2==(x2−1x)arctan(x)+ln(xx2+1)+C∫n1n(1+1x2)arctan(x)dx==(n2−1n)arctan(n)+ln(nn2+1)−((1n2−11n)arctan(1n)+ln(1n1n2+1))==(n2−1n)arctan(n)+ln(nn2+1)−((1−n2n)(π2−arctan(n))+ln(nn2+1))==π(n2−1)2nlimn→∞π(n2−1)2n=π2limn→∞(n−1n)=∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com