Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35049 by math khazana by abdo last updated on 14/May/18

let A_n  = ∫_(1/n) ^n  (1+(1/x^2 ))arctanx dx  1) calculate A_n   2) find lim_(n→+∞)  A_n

letAn=1nn(1+1x2)arctanxdx1)calculateAn2)findlimn+An

Commented by abdo mathsup 649 cc last updated on 16/May/18

1) let integrate by parts u^′  =1+(1/x^2 )  and  v=arctanx  A_n  = [(1−(1/x))arctanx]_(1/n) ^n   −∫_(1/n) ^n   (1−(1/x)) (dx/(1+x^2 ))  =(1−(1/n))arctan(n) −(1−n)arctan((1/n))  − ∫_(1/n) ^n  (dx/(1+x^2 ))  + ∫_(1/n) ^n    (dx/(x(1+x^2 )))  but  ∫_(1/n) ^n    (dx/(1+x^2 )) = arctan(n) −arctan((1/n))  ∫_(1/n) ^n (1/(x(1+x^2 ))) dx= ∫_(1/n) ^n ((1/x) −(x/(1+x^2 )))dx  =ln(n) −ln((1/n))  −(1/2)[ln(1+x^2 )]_(1/n) ^n   = 2ln(n) −(1/2){ ln(1+n^2 ) −ln(1+(1/n^2 ))}⇒  A_n  = (1−(1/n))arctan(n)−(1−n)arctan((1/n))  −arctan(n) +arctan((1/n))  +2ln(n)−(1/2)(2ln(n))  A_n =−((arctan(n))/n) +n arctan((1/n)) +(π/2) −2arctan(n)  +ln(n)  2) we have  lim_(n→+∞) ( −((arctan(n))/n) +n arctan((1/n)) +(π/2) −2arctsn(n))  =0 +1 −(π/2) −π   but lim_(n→+∞)  ln(n) =+∞ ⇒  lim_(n→+∞)   A_n = +∞.

1)letintegratebypartsu=1+1x2andv=arctanxAn=[(11x)arctanx]1nn1nn(11x)dx1+x2=(11n)arctan(n)(1n)arctan(1n)1nndx1+x2+1nndxx(1+x2)but1nndx1+x2=arctan(n)arctan(1n)1nn1x(1+x2)dx=1nn(1xx1+x2)dx=ln(n)ln(1n)12[ln(1+x2)]1nn=2ln(n)12{ln(1+n2)ln(1+1n2)}An=(11n)arctan(n)(1n)arctan(1n)arctan(n)+arctan(1n)+2ln(n)12(2ln(n))An=arctan(n)n+narctan(1n)+π22arctan(n)+ln(n)2)wehavelimn+(arctan(n)n+narctan(1n)+π22arctsn(n))=0+1π2πbutlimn+ln(n)=+limn+An=+.

Answered by MJS last updated on 15/May/18

∫(1+(1/x^2 ))arctan(x)dx=  =∫arctan(x)dx+∫((arctan(x))/x^2 )dx=              ∫arctan(x)dx=                       [((∫u′v=uv−∫uv′)),((u′=1 ⇒ u=x)),((v=arctan(x) ⇒ v′=(1/(x^2 +1)))) ]            =xarctan(x)−∫(x/(x^2 +1))dx=                       [((t=x^2 +1 → dx=(dt/(2x)))) ]            =xarctan(x)−(1/2)∫(1/t)dt=            =xarctan(x)−((ln(t))/2)=            =xarctan(x)−((ln(x^2 +1))/2)              ∫((arctan(x))/x^2 )dx=                       [((∫u′v=uv−∫uv′)),((u′=(1/x^2 ) ⇒ u=−(1/x))),((v=arctan(x) ⇒ v′=(1/(x^2 +1)))) ]            =−((arctan(x))/x)+∫(1/(x(x^2 +1)))dx=            =−((arctan(x))/x)+∫((1/x)−(x^2 /(x^2 +1)))dx=                       [((same as above)) ]            =−((arctan(x))/x)+ln(x)−((ln(x^2 +1))/2)    =xarctan(x)−((ln(x^2 +1))/2)−((arctan(x))/x)+ln(x)−((ln(x^2 +1))/2)=  =(((x^2 −1)/x))arctan(x)+ln((x/(x^2 +1)))+C  ∫_(1/n) ^n (1+(1/x^2 ))arctan(x)dx=  =(((n^2 −1)/n))arctan(n)+ln((n/(n^2 +1)))−(((((1/n^2 )−1)/(1/n)))arctan((1/n))+ln(((1/n)/((1/n^2 )+1))))=  =(((n^2 −1)/n))arctan(n)+ln((n/(n^2 +1)))−((((1−n^2 )/n))((π/2)−arctan(n))+ln((n/(n^2 +1))))=  =((π(n^2 −1))/(2n))    lim_(n→∞) ((π(n^2 −1))/(2n))=(π/2)lim_(n→∞) (n−(1/n))=∞

(1+1x2)arctan(x)dx==arctan(x)dx+arctan(x)x2dx=arctan(x)dx=[uv=uvuvu=1u=xv=arctan(x)v=1x2+1]=xarctan(x)xx2+1dx=[t=x2+1dx=dt2x]=xarctan(x)121tdt==xarctan(x)ln(t)2==xarctan(x)ln(x2+1)2arctan(x)x2dx=[uv=uvuvu=1x2u=1xv=arctan(x)v=1x2+1]=arctan(x)x+1x(x2+1)dx==arctan(x)x+(1xx2x2+1)dx=[sameasabove]=arctan(x)x+ln(x)ln(x2+1)2=xarctan(x)ln(x2+1)2arctan(x)x+ln(x)ln(x2+1)2==(x21x)arctan(x)+ln(xx2+1)+Cn1n(1+1x2)arctan(x)dx==(n21n)arctan(n)+ln(nn2+1)((1n211n)arctan(1n)+ln(1n1n2+1))==(n21n)arctan(n)+ln(nn2+1)((1n2n)(π2arctan(n))+ln(nn2+1))==π(n21)2nlimnπ(n21)2n=π2limn(n1n)=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com