Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67795 by mathmax by abdo last updated on 31/Aug/19

let  A_p =∫_0 ^π  x^p  cos(nx)dx  1) calculate A_0 ,A_1 ,A_2   2)determine a relation of recurrence between  A_p

letAp=0πxpcos(nx)dx1)calculateA0,A1,A22)determinearelationofrecurrencebetweenAp

Commented by mathmax by abdo last updated on 03/Sep/19

1) A_0 =∫_0 ^π  cos(nx)dx =[(1/n)sin(nx)]_0 ^π  =0  A_1 =∫_0 ^π  x cos(nx)dx   by parts   A_1 =[(x/n)sin(nx)]_0 ^(π ) −∫_0 ^π (1/n)sin(nx)dx  =−(1/n) ∫_0 ^π  sin(nx)dx =−(1/n)[−(1/n)cos(nx)]_0 ^π =(1/n^2 ){ (−1)^n −1}  A_2 =∫_0 ^π  x^2 cos(nx)dx =_(by parts)    [(x^2 /n)sin(nx)]_0 ^π  −∫_0 ^π  ((2x)/n)sin(nx)dx  =−(1/n)∫_0 ^π  xsin(nx)dx =−(1/n){ [−(x/n)cos(nx)]_0 ^π −∫_0 ^π −(1/n)cos(nx)dx}  =−(1/n){−(1/n)(π(−1)^n ) +(1/n^2 )[sin(nx)]_0 ^π }  =(π/n^2 )(−1)^n

1)A0=0πcos(nx)dx=[1nsin(nx)]0π=0A1=0πxcos(nx)dxbypartsA1=[xnsin(nx)]0π0π1nsin(nx)dx=1n0πsin(nx)dx=1n[1ncos(nx)]0π=1n2{(1)n1}A2=0πx2cos(nx)dx=byparts[x2nsin(nx)]0π0π2xnsin(nx)dx=1n0πxsin(nx)dx=1n{[xncos(nx)]0π0π1ncos(nx)dx}=1n{1n(π(1)n)+1n2[sin(nx)]0π}=πn2(1)n

Commented by mathmax by abdo last updated on 04/Sep/19

2) by parts  u^′ =x^p  and v=cos(nx) ⇒  A_p =[(x^(p+1) /(p+1)) cos(nx)]_0 ^π  −∫_0 ^π  (x^(p+1) /(p+1))(−nsin(nx))dx  =(π^(p+1) /(p+1))(−1)^n   +(n/(p+1)) ∫_0 ^π   x^(p+1)  sin(nx)dx again by parts  u^′  =x^(p+1)  and v =sin(nx) ⇒  ∫_0 ^π   x^(p+1)  sin(nx)dx =[(x^(p+2) /(p+2)) sin(nx)]_0 ^π  −∫_0 ^π  (x^(p+2) /(p+2))(1/n)cos(nx)dx  =−(1/(n(p+2))) ∫_0 ^π  x^(p+2)  cos(nx)dx =−(1/(n(p+2))) A_(p+2)  ⇒  A_p =(π^(p+1) /(p+1))(−1)^n  +(n/(p+1))(−(1/(n(p+2))))A_(p+2)  ⇒  A_p =(π^(p+1) /(p+1))(−1)^n −(1/((p+1)(p+2))) A_(p+2)    ⇒  (1/((p+1)(p+2))) A_(p+2) =(π^(p+1) /(p+1))(−1)^n  −A_p  ⇒  A_(p+2) =(p+1)(p+2)(π^(p+1) /(p+1))(−1)^n − (p+1)(p+2)A_p  ⇒  A_(p+2)  =(p+2)(−1)^n π^(p+1)  −(p+1)(p+2)A_p

2)bypartsu=xpandv=cos(nx)Ap=[xp+1p+1cos(nx)]0π0πxp+1p+1(nsin(nx))dx=πp+1p+1(1)n+np+10πxp+1sin(nx)dxagainbypartsu=xp+1andv=sin(nx)0πxp+1sin(nx)dx=[xp+2p+2sin(nx)]0π0πxp+2p+21ncos(nx)dx=1n(p+2)0πxp+2cos(nx)dx=1n(p+2)Ap+2Ap=πp+1p+1(1)n+np+1(1n(p+2))Ap+2Ap=πp+1p+1(1)n1(p+1)(p+2)Ap+21(p+1)(p+2)Ap+2=πp+1p+1(1)nApAp+2=(p+1)(p+2)πp+1p+1(1)n(p+1)(p+2)ApAp+2=(p+2)(1)nπp+1(p+1)(p+2)Ap

Terms of Service

Privacy Policy

Contact: info@tinkutara.com