All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33884 by math khazana by abdo last updated on 26/Apr/18
letF(x)=∫0π2arctan(xtant)tantdtfindasimpleformoff(x).2)findthevalueof∫0π2arctan(2tant)tantdt.
Commented by abdo imad last updated on 28/Apr/18
wehavedFdx(x)=∫0π2tant(1+x2tan2t)tantdt=∫0π2dt1+x2tan2tbutchangementtant=ugivedFdx=∫0∞1(1+x2u2)du1+u2letdecomposeF(u)=1(1+x2u2)(1+u2)=au+b1+x2u2+cu+d1+u2F(−u)=F(u)⇔−au+b1+x2u2+−cu+d1+u2=au+b1+x2u2+cu+d1+u2⇒a=0andc=0⇒F(u)=b1+x2u2+d1+u2limx→+∞u2F(u)=0=bx2+d⇒b+dx2=0⇒b=−dx2F(u)=−dx21+x2u2+d1+u2wehaveF(0)=1=−dx2+d=(1−x2)d⇒d=11−x2ifx2≠1⇒F(u)=−x2(1−x2)(1+x2u2)+1(1−x2)(1+u2)dFdx(x)=−x21−x2∫0∞du1+x2u2+11−x2∫0∞du1+u2=xu=t−x21−x2∫0∞11+t2dtx+11−x2π2=−x1−x2π2+π211−x2=π2(1−x2)(1−x)=π2(1+x)⇒F(x)=π2∫0xln(1+t)dt+λbutλ=F(0)=0⇒F(x)=π2∫0xln(1+t)dt=1+t=uπ2∫11+xln(u)du=π2[uln(u)−u]11+x=π2((1+x)ln(1+x)−1−x+1)=π2((x+1)ln(x+1)−x)2)∫0π2arctan(2tant)tantdt=F(2)=π2(3ln(3)−2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com