Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33884 by math khazana by abdo last updated on 26/Apr/18

let F(x)= ∫_0 ^(π/2)  ((arctan(xtant))/(tant)) dt find a simple  form of f(x) .  2) find the value of ∫_0 ^(π/2)   ((arctan(2tant))/(tant))dt .

letF(x)=0π2arctan(xtant)tantdtfindasimpleformoff(x).2)findthevalueof0π2arctan(2tant)tantdt.

Commented by abdo imad last updated on 28/Apr/18

we have (dF/dx)(x)= ∫_0 ^(π/2)      ((tant)/((1+x^2 tan^2 t)tant))dt  = ∫_0 ^(π/2)     (dt/(1+x^2 tan^2 t))    but changement tant =u give  (dF/dx) =∫_0 ^∞      (1/((1+x^2 u^2 ))) (du/(1+u^2 ))  let decompose  F(u) = (1/((1+x^2 u^2 )(1+u^2 ))) = ((au+b)/(1+x^2 u^2 )) +((cu+d)/(1+u^2 ))  F(−u)=F(u) ⇔((−au +b)/(1+x^2 u^2 )) +((−cu +d)/(1+u^2 )) =((au +b)/(1+x^2 u^2 )) +((cu +d)/(1+u^2 )) ⇒  a=0 and c=0 ⇒F(u)= (b/(1+x^2 u^2 )) +(d/(1+u^2 ))  lim_(x→+∞) u^2 F(u)=0=(b/x^2 ) +d ⇒b+dx^2 =0 ⇒b=−dx^2   F(u) =((−dx^2 )/(1+x^2 u^2 )) + (d/(1+u^2 )) we have F(0)=1 =−dx^2  +d  =(1−x^2 )d ⇒d=(1/(1−x^2 )) if x^2 ≠1 ⇒  F(u)=((−x^2 )/((1−x^2 )(1+x^2 u^2 ))) + (1/((1−x^2 )(1+u^2 )))  (dF/dx)(x)^ = ((−x^2 )/(1−x^2 )) ∫_0 ^∞   (du/(1+x^2 u^2 ))  + (1/(1−x^2 )) ∫_0 ^∞     (du/(1+u^2 ))  =_(xu =t)    ((−x^2 )/(1−x^2 ))  ∫_0 ^∞     (1/(1+t^2 )) (dt/x)  +(1/(1−x^2 )) (π/2)  =((−x)/(1−x^2 )) (π/2)  +(π/2) (1/(1−x^2 )) =(π/(2(1−x^2 ))) (1−x) = (π/(2(1+x)))  ⇒ F(x) = (π/2)∫_0 ^x  ln(1+t)dt  +λ  but λ=F(0)=0 ⇒  F(x)=(π/2) ∫_0 ^x ln(1+t)dt =_(1+t=u) (π/2) ∫_1 ^(1+x) ln(u)du  =(π/2)[uln(u)−u]_1 ^(1+x)  =(π/2)((1+x)ln(1+x)−1−x +1)  =(π/2)( (x+1)ln(x+1)−x)  2) ∫_0 ^(π/2)    ((arctan(2tant))/(tant)) dt = F(2) =(π/2)(3ln(3) −2)

wehavedFdx(x)=0π2tant(1+x2tan2t)tantdt=0π2dt1+x2tan2tbutchangementtant=ugivedFdx=01(1+x2u2)du1+u2letdecomposeF(u)=1(1+x2u2)(1+u2)=au+b1+x2u2+cu+d1+u2F(u)=F(u)au+b1+x2u2+cu+d1+u2=au+b1+x2u2+cu+d1+u2a=0andc=0F(u)=b1+x2u2+d1+u2limx+u2F(u)=0=bx2+db+dx2=0b=dx2F(u)=dx21+x2u2+d1+u2wehaveF(0)=1=dx2+d=(1x2)dd=11x2ifx21F(u)=x2(1x2)(1+x2u2)+1(1x2)(1+u2)dFdx(x)=x21x20du1+x2u2+11x20du1+u2=xu=tx21x2011+t2dtx+11x2π2=x1x2π2+π211x2=π2(1x2)(1x)=π2(1+x)F(x)=π20xln(1+t)dt+λbutλ=F(0)=0F(x)=π20xln(1+t)dt=1+t=uπ211+xln(u)du=π2[uln(u)u]11+x=π2((1+x)ln(1+x)1x+1)=π2((x+1)ln(x+1)x)2)0π2arctan(2tant)tantdt=F(2)=π2(3ln(3)2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com