Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40151 by maxmathsup by imad last updated on 16/Jul/18

let F(x) = ∫_0 ^(π/2)  cos(xsint)dt  1) prove that  ∀u ∈R  1−(u^2 /2) ≤cosu≤1−(u^2 /2) +(u^4 /(24))  2) prove that (π/2)(1−(x^2 /4))≤F(x)≤ (π/2)(1−(x^2 /4) +(x^4 /(64)))

letF(x)=0π2cos(xsint)dt1)provethatuR1u22cosu1u22+u4242)provethatπ2(1x24)F(x)π2(1x24+x464)

Commented by math khazana by abdo last updated on 19/Jul/18

1) we have  cos(u)=Σ_(n=0) ^∞  (((−1)^n u^(2n) )/((2n)!))  =1−(u^2 /2)  +(u^4 /((4)!)) −(u^6 /(6!)) +.... ∀u∈R ⇒  1−(u^2 /2) ≤cosu ≤1−(u^2 /2) +(u^4 /(24))  2) we get 1−(((xsint)^2 )/2) ≤cos(xsint)≤1−(((xsint)^2 )/2)  +(((xsint)^4 )/(24)) ⇒  ∫_0 ^(π/2) (1−(x^2 /2)sin^2 t)dt ≤ ∫_0 ^(π/2)  cos(xsint)dt  ≤ ∫_0 ^(π/2)  (1−((x^2  sin^2 t)/2) +((x^4  sin^4 )/(24)))dt but  ∫_0 ^(π/2) (1−(x^2 /2)sin^2 t)dt =(π/2) −(x^2 /2) ∫_0 ^(π/2)  ((1−cos(2t))/2)dt  =(π/2) −(x^2 /4) (π/2) =(π/2)(1−(x^2 /4)) also  ∫_0 ^(π/2) (1−((x^2  sin^2 t)/2) +((x^4 sin^4 t)/(24)))dt  =(π/2)(1−(x^2 /4)) +(x^4 /(24)) ∫_0 ^(π/2) (((1−cos(2t))/2))^2  dt  =(π/2)(1−(x^2 /4)) +(x^4 /(96)) ∫_0 ^(π/2) (1−2cos(2t) +cos^2 (2t))dt  =(π/2)(1−(x^2 /2)) +(x^4 /(96)) (π/2) + (x^4 /(96)) ∫_0 ^(π/2)  ((1+cos(4t))/2)dt  =(π/2)(1−(x^2 /2))+(π/2)(  (1/(96))  +(1/(2.96)))x^4   =(π/2)(1−(x^2 /2)) +(x^4 /(64)).(π/2) =(π/2)(1−(x^2 /2) +(x^4 /(64))) ⇒  tbe result is proved.

1)wehavecos(u)=n=0(1)nu2n(2n)!=1u22+u4(4)!u66!+....uR1u22cosu1u22+u4242)weget1(xsint)22cos(xsint)1(xsint)22+(xsint)4240π2(1x22sin2t)dt0π2cos(xsint)dt0π2(1x2sin2t2+x4sin424)dtbut0π2(1x22sin2t)dt=π2x220π21cos(2t)2dt=π2x24π2=π2(1x24)also0π2(1x2sin2t2+x4sin4t24)dt=π2(1x24)+x4240π2(1cos(2t)2)2dt=π2(1x24)+x4960π2(12cos(2t)+cos2(2t))dt=π2(1x22)+x496π2+x4960π21+cos(4t)2dt=π2(1x22)+π2(196+12.96)x4=π2(1x22)+x464.π2=π2(1x22+x464)tberesultisproved.

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18

p+iq=∫_0 ^(Π/2) e^(ixsint) dt  ∫_0 ^(Π/2) 1+ixsint+((i^2 x^2 sin^2 t)/(2!))+((i^3 x^3 sin^3 t)/(3!))+((i^4 x^4 sin^4 t)/(4!))+..  p=F(x)=   ∫_0 ^(Π/2) 1−((x^2 sin^2 t)/4)+((x^4 sin^4 t)/(24))+..dt   1≥sin^2 t≥0  ...  1≥sin^(2k) t≥0  2k=even  so   ∫_0 ^(Π/2) 1−(x^2 /4)dt≤F(x)≤∫_0 ^(Π/2) 1−(x^2 /4)+(x^4 /(24))dt  (1−(x^2 /4))(Π/2)≤F(x)≤(1−(x^2 /4)+(x^4 /(24)))(Π/2)

p+iq=0Π2eixsintdt0Π21+ixsint+i2x2sin2t2!+i3x3sin3t3!+i4x4sin4t4!+..p=F(x)=0Π21x2sin2t4+x4sin4t24+..dt1sin2t0...1sin2kt02k=evenso0Π21x24dtF(x)0Π21x24+x424dt(1x24)Π2F(x)(1x24+x424)Π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com