All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40151 by maxmathsup by imad last updated on 16/Jul/18
letF(x)=∫0π2cos(xsint)dt1)provethat∀u∈R1−u22⩽cosu⩽1−u22+u4242)provethatπ2(1−x24)⩽F(x)⩽π2(1−x24+x464)
Commented by math khazana by abdo last updated on 19/Jul/18
1)wehavecos(u)=∑n=0∞(−1)nu2n(2n)!=1−u22+u4(4)!−u66!+....∀u∈R⇒1−u22⩽cosu⩽1−u22+u4242)weget1−(xsint)22⩽cos(xsint)⩽1−(xsint)22+(xsint)424⇒∫0π2(1−x22sin2t)dt⩽∫0π2cos(xsint)dt⩽∫0π2(1−x2sin2t2+x4sin424)dtbut∫0π2(1−x22sin2t)dt=π2−x22∫0π21−cos(2t)2dt=π2−x24π2=π2(1−x24)also∫0π2(1−x2sin2t2+x4sin4t24)dt=π2(1−x24)+x424∫0π2(1−cos(2t)2)2dt=π2(1−x24)+x496∫0π2(1−2cos(2t)+cos2(2t))dt=π2(1−x22)+x496π2+x496∫0π21+cos(4t)2dt=π2(1−x22)+π2(196+12.96)x4=π2(1−x22)+x464.π2=π2(1−x22+x464)⇒tberesultisproved.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
p+iq=∫0Π2eixsintdt∫0Π21+ixsint+i2x2sin2t2!+i3x3sin3t3!+i4x4sin4t4!+..p=F(x)=∫0Π21−x2sin2t4+x4sin4t24+..dt1⩾sin2t⩾0...1⩾sin2kt⩾02k=evenso∫0Π21−x24dt⩽F(x)⩽∫0Π21−x24+x424dt(1−x24)Π2⩽F(x)⩽(1−x24+x424)Π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com