Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32365 by prof Abdo imad last updated on 23/Mar/18

let F(x) = ∫_0 ^π  ln(1+xcosθ)dθ .with ∣x∣<1  find F(x) .

letF(x)=0πln(1+xcosθ)dθ.withx∣<1findF(x).

Commented by prof Abdo imad last updated on 25/Mar/18

we have F^′ (x)= ∫_0 ^π   ((cosθ)/(1+xcosθ))dθ and for x≠o  (dF/dx)(x)=(1/x) ∫_0 ^π   ((xcoθ +1−1)/(1+x cosθ)) dθ  =(π/x) −(1/x)∫_0 ^π    (dθ/(1+xcosθ))  but ch. tan((θ/2))=t give  ∫_0 ^π    (dθ/(1+xcosθ)) = ∫_0 ^∞    (1/(1+x((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^∞     ((2dt)/(1+t^2  +x −xt^2 )) = ∫_0 ^∞    ((2dt)/(1+x +(1−x)t^2 ))  =(1/(1+x)) ∫_0 ^∞     ((2dt)/(1+((1−x)/(1+x))t^2 ))  =_(u=(√((1−x)/(1+x))) t)    (1/(1+x)) ∫_0 ^∞    ((2dt)/(1+u^2 )) ((√(1+x))/(√(1−x))) du  =  (2/(√(1−x^2 ))) (π/2) = (π/(√(1−x^2 )))  (dF/dx)(x)= (π/x)  −(π/(x(√(1−x^2 )))) ⇒  F(x)= πln∣x∣  −π ∫   (dx/(x(√(1−x^2 ))))  +λch. x=sint give  ∫    (dx/(x(√(1−x^2 )))) =  ∫   ((cost)/(sint cost))dt = ∫   (dt/(sint))  ch.tan((t/2))=u ⇒ ∫  (dt/(sint)) = ∫ (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  = ∫  (du/u) =ln∣u∣ =ln∣tan((t/2))∣=ln∣tan(((arcsinx)/2))∣  F(x) = π ln∣x∣ −π ln∣tan(((arcsinx)/2))∣ +λ  λ =F(1) =∫_0 ^π  ln(1+cosθ)dθ

wehaveF(x)=0πcosθ1+xcosθdθandforxodFdx(x)=1x0πxcoθ+111+xcosθdθ=πx1x0πdθ1+xcosθbutch.tan(θ2)=tgive0πdθ1+xcosθ=011+x1t21+t22dt1+t2=02dt1+t2+xxt2=02dt1+x+(1x)t2=11+x02dt1+1x1+xt2=u=1x1+xt11+x02dt1+u21+x1xdu=21x2π2=π1x2dFdx(x)=πxπx1x2F(x)=πlnxπdxx1x2+λch.x=sintgivedxx1x2=costsintcostdt=dtsintch.tan(t2)=udtsint=12u1+u22du1+u2=duu=lnu=lntan(t2)∣=lntan(arcsinx2)F(x)=πlnxπlntan(arcsinx2)+λλ=F(1)=0πln(1+cosθ)dθ

Commented by prof Abdo imad last updated on 25/Mar/18

∫_0 ^π  ln(1+cosθ)dθ = ∫_0 ^π  ln(2cos^2 ((θ/2)))dθ  = πln(2) +2 ∫_0 ^π  ln(cos((θ/2)))dθ  =_((θ/2)=t)   πln(2) +2 ∫_0 ^(π/2)  ln(cost)2dt  =π ln(2) +4 ∫_0 ^(π/2) ln(cost)dt  = π ln(2) +4(−((πln2)/2)) = −πln(2) finally  F(x) = π ln∣x∣ −π ln∣tan(((arcsinx)/2))∣ −πln(2).

0πln(1+cosθ)dθ=0πln(2cos2(θ2))dθ=πln(2)+20πln(cos(θ2))dθ=θ2=tπln(2)+20π2ln(cost)2dt=πln(2)+40π2ln(cost)dt=πln(2)+4(πln22)=πln(2)finallyF(x)=πlnxπlntan(arcsinx2)πln(2).

Commented by prof Abdo imad last updated on 25/Mar/18

F(0) =0

F(0)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com