All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 68001 by mathmax by abdo last updated on 03/Sep/19
letF(x)=∫2xx2+1e−xtx+2tdtcalculateF′(x)
Commented by mathmax by abdo last updated on 06/Sep/19
F(x)=∫2xx2+1e−xtx+2tdtwehaveu(x)=2x,v(x)=x2+1,g(x,t)=e−xtx+2tweapllytbeformula⇒F′(x)=∫u(x)v(x)∂g∂x(x,t)dt+v′g(x,v)−u′g(x,u)=∫2xx2+1∂g∂x(x,t)dt+2xg(x,x2+1)−2g(x,2x)g(x,x2+1)=e−x(x2+1)x+2(x2+1)=e−x3−x2x2+x+2g(x,2x)=e−x(2x)x+2(2x)=e−2x25x∂g∂x(x,t)=−te−xt(x+2t)−e−xt(x+2t)2=(−tx−2t2)e−xt(x+2t)2⇒F′(x)=−∫2xx2+1(tx+2t2)e−xt(x+2t)2dt+2xe−x3−x2x2+x+2−2e−2x25x
Terms of Service
Privacy Policy
Contact: info@tinkutara.com