Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 68019 by mathmax by abdo last updated on 03/Sep/19

let F(x) =∫_x ^(x^2 +1) e^(−2t) sin(xt)dt  determine F^′ (x) and calculate lim_(x→0)  F(x).

letF(x)=xx2+1e2tsin(xt)dtdetermineF(x)andcalculatelimx0F(x).

Commented by kaivan.ahmadi last updated on 05/Sep/19

thank you sir abdo

thankyousirabdo

Commented by mathmax by abdo last updated on 05/Sep/19

sir ahmadi your answer is not correct  because the function   under integral contain 2 varibles x and t ...!

sirahmadiyouranswerisnotcorrectbecausethefunctionunderintegralcontain2variblesxandt...!

Commented by mathmax by abdo last updated on 05/Sep/19

F(x) =∫_x ^(x^2  +1)  e^(−2t)  sin(xt)dt  we have u(x)=x and v(x)=x^2  +1and  g(x,t) =e^(−2t) sin(xt)  we use the formulae   F^, (x) =∫_(u(x)) ^(v(x))  (∂g/∂x)(x,t)dt +v^′ g(x,v)−u^′ g(x,u)  =∫_x ^(x^2  +1)   t e^(−2t)  cos(xt)dt +2x g(x,x^2  +1)−g(x,x^2 )  =∫_x ^(x^2  +1)  t e^(−2t)  cos(xt)dt +2xe^(−2(x^2 +1))  sin(x(x^2  +1))−e^(−2x^2 ) sin(x^3 )  we have ∫_x ^(x^2  +1 )  t e^(−2t)  cos(xt)dt =Re(∫_x ^(x^2 +1)  t e^(−2t+ixt)  dt)  ∫_x ^(x^2  +1)  t e^((−2+ix)t)  dt =[(t/(−2+ix)) e^((−2+ix)t) ]_(t=x) ^(t=x^2  +1) −∫_x ^(x^2  +1) (1/(−2+ix))e^((−2+ix)t) dt  =(1/(−2+ix)){(x^2  +1)e^((−2+ix)(x^2 +1)) −xe^((−2+ix)x) }  −(1/(−2+ix)) ∫_x ^(x^2 +1)  e^((−2+ix)t) dt ....rest to finich the calculus.

F(x)=xx2+1e2tsin(xt)dtwehaveu(x)=xandv(x)=x2+1andg(x,t)=e2tsin(xt)weusetheformulaeF,(x)=u(x)v(x)gx(x,t)dt+vg(x,v)ug(x,u)=xx2+1te2tcos(xt)dt+2xg(x,x2+1)g(x,x2)=xx2+1te2tcos(xt)dt+2xe2(x2+1)sin(x(x2+1))e2x2sin(x3)wehavexx2+1te2tcos(xt)dt=Re(xx2+1te2t+ixtdt)xx2+1te(2+ix)tdt=[t2+ixe(2+ix)t]t=xt=x2+1xx2+112+ixe(2+ix)tdt=12+ix{(x2+1)e(2+ix)(x2+1)xe(2+ix)x}12+ixxx2+1e(2+ix)tdt....resttofinichthecalculus.

Commented by mathmax by abdo last updated on 06/Sep/19

you are welcome sir.

youarewelcomesir.

Commented by mathmax by abdo last updated on 08/Sep/19

we have F(x)=∫_x ^(x^2 +1)  e^(−2t)  sin(xt)dt ⇒F(x)=Im(∫_x ^(x^2 +1)  e^(−2t+ixt) dt)  ∫_x ^(x^2 +1)  e^((−2+ix)t) dt =[(1/(−2+ix)) e^((−2+ix)t) ]_x ^(x^2  +1)   =((−1)/(2−ix)){  e^((−2+ix)(x^2 +1)) −e^((−2+ix)x) }  =((−1)/(2−ix)){ e^(−2(x^2  +1))  e^(i(x^3  +x))  −e^(−2x)  e^(ix^2 ) }  =((−1)/(2−ix)){ e^(−2x^2 −2) (cos(x^3 +x)+isin(x^3 +x)−e^(−2x) (cos(x^2 )+isin(x^2 )}  =−((2+ix)/(4+x^2 )){  e^(−2x^2 −2) cos(x^3  +x)−e^(−2x) cos(x^2 )  +i( e^(−2x^2 −2)  sin(x^3  +x)−e^(−2x) sin(x^2 )}  =−(1/(4+x^2 ))(2+ix){......}  =−(1/(4+x^2 )){  2( e^(−2x^2 −2)  cos(x^3  +x)−e^(−2x) cos(x^2 ))  +2i(e^(−2x^2 −2)  sin(x^3  +x)−e^(−2x) sin(x^2 )) +ix( e^(−2x^2 −2) cos(x^3  +x)  −e^(−2x)  cos(x^2 )−x(e^(−2x^2 −2) sin(x^3  +x)−e^(−2x) sin(x^2 )} ⇒  F(x) =−(1/(4+x^2 )){  2(e^(−2x^2 −2) sin(x^3 +x)−e^(−2x) sin(x^2 ))  +x(e^(−2x^2 −2)  cos(x^3 +x)−e^(−2x) cos(x^2 )} ⇒lim_(x→0) F(x) =0

wehaveF(x)=xx2+1e2tsin(xt)dtF(x)=Im(xx2+1e2t+ixtdt)xx2+1e(2+ix)tdt=[12+ixe(2+ix)t]xx2+1=12ix{e(2+ix)(x2+1)e(2+ix)x}=12ix{e2(x2+1)ei(x3+x)e2xeix2}=12ix{e2x22(cos(x3+x)+isin(x3+x)e2x(cos(x2)+isin(x2)}=2+ix4+x2{e2x22cos(x3+x)e2xcos(x2)+i(e2x22sin(x3+x)e2xsin(x2)}=14+x2(2+ix){......}=14+x2{2(e2x22cos(x3+x)e2xcos(x2))+2i(e2x22sin(x3+x)e2xsin(x2))+ix(e2x22cos(x3+x)e2xcos(x2)x(e2x22sin(x3+x)e2xsin(x2)}F(x)=14+x2{2(e2x22sin(x3+x)e2xsin(x2))+x(e2x22cos(x3+x)e2xcos(x2)}limx0F(x)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com