All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 68879 by mathmax by abdo last updated on 16/Sep/19
letI=∫01xln(1+x)dxdetermineaapproximatevalueofI
Commented by Abdo msup. last updated on 21/Sep/19
thereaerrorofcalculusintheansweriwillhidthispost...
Commented by mathmax by abdo last updated on 22/Sep/19
wehaveln′(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1+c(c=0)⇒ln(1+x)=x−x22+x33−...⇒x−x22⩽ln(1+x)⩽x⇒1x⩽1ln(1+x)⩽1x−x22⇒1⩽xln(1+x)⩽11−x2⇒1⩽∫01xln(1+x)dx⩽∫01dx1−x2wehave∫01dx1−x2=∫012dx2−x=−2∫01dxx−2=−2[ln∣x−2∣]01=−2(−ln2)=2ln(2)⇒1⩽I⩽2ln(2)sov0=1+2ln(2)2isaapproximatevalueofI.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com