All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66334 by mathmax by abdo last updated on 12/Aug/19
letI=∫0π4e−2tcos4tdtandJ=∫0π4e−2tsin4tdt1)calculateI+JandI−J2)findthevalueofIandJ.
Commented by mathmax by abdo last updated on 13/Aug/19
1)I+J=∫0π4(cos4t+sin4t)e−2tdt=∫0π4((cos2t+sin2t)2−2sin2tcos2t)e−2tdt=∫0π4(1−12sin2(2t))e−2tdt=∫0π4e−2tdt−14∫0π4(1−cos(4t))e−2tdt=34∫0π4e−2tdt+14∫0π4cos(4t)e−2tdt∫0π4e−2tdt=[−12e−2t]0π4=−12(e−π2−1)∫0π4cos(4t)e−2tdt=Re(∫0π4e−2t+i4tdt)∫0π4e(−2+4i)tdt=[1−2+4ie(−2+4i)t]0π4=−12−4i{e(−2+4i)π4−1}=−(2+4i)20{e−π2(cos(π)+isin(π))−1}=1+2i10{1+e−π2}⇒∫0π4cos(4t)e−2tdt=110e−π2⇒I+J=−38(e−π2−1)+140e−π2=(140−38)e−π2+38=−1440e−π2+38=−720e−π2+38
wehaveI−J=∫0π4(cos4t−sin4t)e−2tdt=∫0π4(cos2t−sin2t)e−2tdt=∫0π4cos(2t)e−2tdt=Re(∫0π4e−2t+i2tdt)and∫0π4e(−2+2i)tdt=[1−2+2ie(−2+2i)t]0π4=−12−2i{e(−2+2i)π4−1}=−2+2i8{e−π2i−1}=1+i4(1−ie−π2)=1−ie−π2+i+e−π24=1+e−π2+i(1−e−π2)4⇒∫0π4cos(2t)e−2tdt=14(1+e−π2)⇒I−J=14+14e−π2wehaveI+J=38−720e−π2⇒2I=14+38+(14−720)e−π2=58−110e−π2also2J=38−14+(−720−14)e−π2=18−35e−π2⇒I=516−120e−π2andJ=116−310e−π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com