Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66334 by mathmax by abdo last updated on 12/Aug/19

let I =∫_0 ^(π/4)   e^(−2t)  cos^4 t dt and J=∫_0 ^(π/4)  e^(−2t)  sin^4 tdt  1)calculate  I+J and I−J  2) find the value of I and J.

letI=0π4e2tcos4tdtandJ=0π4e2tsin4tdt1)calculateI+JandIJ2)findthevalueofIandJ.

Commented by mathmax by abdo last updated on 13/Aug/19

1) I+J =∫_0 ^(π/4)  (cos^4 t +sin^4 t)e^(−2t) dt =∫_0 ^(π/4) ((cos^2 t+sin^2 t)^2 −2sin^2 tcos^2 t)e^(−2t) dt  =∫_0 ^(π/4) (1−(1/2)sin^2 (2t))e^(−2t) dt =∫_0 ^(π/4)  e^(−2t) dt−(1/4)∫_0 ^(π/4) (1−cos(4t))e^(−2t) dt  =(3/4) ∫_0 ^(π/4)  e^(−2t)  dt +(1/4) ∫_0 ^(π/4)  cos(4t)e^(−2t) dt   ∫_0 ^(π/4)  e^(−2t) dt  =[−(1/2)e^(−2t) ]_0 ^(π/4)  =−(1/2)(e^(−(π/2)) −1)  ∫_0 ^(π/4)  cos(4t)e^(−2t) dt =Re(∫_0 ^(π/4)  e^(−2t+i4t) dt)  ∫_0 ^(π/4)  e^((−2+4i)t) dt =[(1/(−2+4i))e^((−2+4i)t) ]_0 ^(π/4)  =−(1/(2−4i)) { e^((−2+4i)(π/4)) −1}  =−(((2+4i))/(20)){ e^(−(π/2)) (cos(π)+isin(π))−1}  =((1+2i)/(10)){ 1+e^(−(π/2)) } ⇒∫_0 ^(π/4)  cos(4t)e^(−2t) dt =(1/(10))e^(−(π/2))  ⇒  I +J =−(3/8)(e^(−(π/2)) −1) +(1/(40)) e^(−(π/2))  =((1/(40))−(3/8))e^(−(π/2))  +(3/8)  =−((14)/(40))e^(−(π/2))  +(3/8) =−(7/(20))e^(−(π/2))  +(3/8)

1)I+J=0π4(cos4t+sin4t)e2tdt=0π4((cos2t+sin2t)22sin2tcos2t)e2tdt=0π4(112sin2(2t))e2tdt=0π4e2tdt140π4(1cos(4t))e2tdt=340π4e2tdt+140π4cos(4t)e2tdt0π4e2tdt=[12e2t]0π4=12(eπ21)0π4cos(4t)e2tdt=Re(0π4e2t+i4tdt)0π4e(2+4i)tdt=[12+4ie(2+4i)t]0π4=124i{e(2+4i)π41}=(2+4i)20{eπ2(cos(π)+isin(π))1}=1+2i10{1+eπ2}0π4cos(4t)e2tdt=110eπ2I+J=38(eπ21)+140eπ2=(14038)eπ2+38=1440eπ2+38=720eπ2+38

Commented by mathmax by abdo last updated on 13/Aug/19

we have I−J =∫_0 ^(π/4) (cos^4 t−sin^4 t)e^(−2t) dt =∫_0 ^(π/4) (cos^2 t−sin^2 t)e^(−2t) dt  =∫_0 ^(π/4)  cos(2t)e^(−2t) dt =Re(∫_0 ^(π/4)  e^(−2t+i2t)  dt) and  ∫_0 ^(π/4)  e^((−2+2i)t) dt =[(1/(−2+2i))e^((−2+2i)t) ]_0 ^(π/4) =−(1/(2−2i)){ e^((−2+2i)(π/4)) −1}  =−((2+2i)/8){ e^(−(π/2)) i −1} =((1+i)/4)(1−i e^(−(π/2)) )  =((1−ie^(−(π/2)) +i+e^(−(π/2)) )/4) =((1+e^(−(π/2))  +i(1−e^(−(π/2)) ))/4) ⇒  ∫_0 ^(π/4)  cos(2t)e^(−2t) dt =(1/4)(1+e^(−(π/2)) ) ⇒ I−J =(1/4) +(1/4)e^(−(π/2))   we have I+J =(3/8)−(7/(20))e^(−(π/2))  ⇒2I =(1/4)+(3/8) +((1/4)−(7/(20)))e^(−(π/2))   =(5/8) −(1/(10))e^(−(π/2))    also 2J =(3/8)−(1/4) +(−(7/(20))−(1/4))e^(−(π/2))   =(1/8) −(3/5)e^(−(π/2))  ⇒  I =(5/(16)) −(1/(20))e^(−(π/2))     and J =(1/(16)) −(3/(10))e^(−(π/2))  .

wehaveIJ=0π4(cos4tsin4t)e2tdt=0π4(cos2tsin2t)e2tdt=0π4cos(2t)e2tdt=Re(0π4e2t+i2tdt)and0π4e(2+2i)tdt=[12+2ie(2+2i)t]0π4=122i{e(2+2i)π41}=2+2i8{eπ2i1}=1+i4(1ieπ2)=1ieπ2+i+eπ24=1+eπ2+i(1eπ2)40π4cos(2t)e2tdt=14(1+eπ2)IJ=14+14eπ2wehaveI+J=38720eπ22I=14+38+(14720)eπ2=58110eπ2also2J=3814+(72014)eπ2=1835eπ2I=516120eπ2andJ=116310eπ2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com