Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39370 by maxmathsup by imad last updated on 05/Jul/18

let I (λ) =  ∫_(−∞) ^(+∞)    ((cos(λx))/((1+ix)^2 ))dx  1)  extract Re(I(λ)) and Im(I(λ))  2) calculate I(λ)  3) conclude  the values of Re(I(λ)) and Im(I(λ)).

letI(λ)=+cos(λx)(1+ix)2dx1)extractRe(I(λ))andIm(I(λ))2)calculateI(λ)3)concludethevaluesofRe(I(λ))andIm(I(λ)).

Commented by abdo mathsup 649 cc last updated on 08/Jul/18

1) we have  I(λ) = ∫_(−∞) ^(+∞) ((cos(λx)(1−ix)^2 )/((1+ix)^2 (1−ix)^2 ))   = ∫_(−∞) ^(+∞)   ((cos(λx)(1−ix)^2 )/((1+x^2 )^2 ))dx  = ∫_(−∞) ^(+∞)  ((cos(λx)(1−2ix −x^2 ))/((1+x^2 )^2 ))dx  = ∫_(−∞) ^(+∞)    (((1−x^2 )cos(λx) −2i x cos(λx))/((1+x^2 )^2 ))dx  = ∫_(−∞) ^(+∞)    (((1−x^2 )cos(λx))/((1+x^2 )^2 ))dx −i ∫_(−∞) ^(+∞)   ((x cos(λx))/((1+x^2 )^2 ))dx⇒  Re( I(λ)) = ∫_(−∞) ^(+∞)    (((1−x^2 )cos(λx))/((1+x^2 )^2 )) dx and  Im( I(λ)) =−∫_(−∞) ^(+∞)    ((x cos(λx))/((1+x^2 )^2 ))dx =0  2) I(λ) = Re( ∫_(−∞) ^(+∞)   (e^(iλx) /((1+ix)^2 ))dx) let  ϕ(z) = (e^(iλz) /((1+iz)^2 ))  poles of ϕ?  ϕ(z) =  (e^(iλz) /((iz−i^2 )^2 )) = (e^(iλz) /((−1)(z−i)^2 )) =−(e^(iλz) /((z−i)^2 ))  so is a double pole for ϕ  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)   Res(ϕ,i) = lim_(z→i)   (1/((2−1)!)) { (z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   {−e^(iλz) }^((1)) =lim_(z→i)  −iλ e^(iλz)   =−iλ e^(−λ)  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ(−i λ e^(−λ) ) = 2π λ e^(−λ)   ⇒  I(I(λ)) =2π λ e^(−λ)   3) Re(I(λ)) = ∫_(−∞) ^(+∞)  (((1−x^2 )cos(λx))/((1+x^2 )^2 ))dx= 2πλ e^(−λ)   and  Im(I(λ))=0

1)wehaveI(λ)=+cos(λx)(1ix)2(1+ix)2(1ix)2=+cos(λx)(1ix)2(1+x2)2dx=+cos(λx)(12ixx2)(1+x2)2dx=+(1x2)cos(λx)2ixcos(λx)(1+x2)2dx=+(1x2)cos(λx)(1+x2)2dxi+xcos(λx)(1+x2)2dxRe(I(λ))=+(1x2)cos(λx)(1+x2)2dxandIm(I(λ))=+xcos(λx)(1+x2)2dx=02)I(λ)=Re(+eiλx(1+ix)2dx)letφ(z)=eiλz(1+iz)2polesofφ?φ(z)=eiλz(izi2)2=eiλz(1)(zi)2=eiλz(zi)2soisadoublepoleforφ+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{eiλz}(1)=limziiλeiλz=iλeλ+φ(z)dz=2iπ(iλeλ)=2πλeλI(I(λ))=2πλeλ3)Re(I(λ))=+(1x2)cos(λx)(1+x2)2dx=2πλeλandIm(I(λ))=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com