All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39370 by maxmathsup by imad last updated on 05/Jul/18
letI(λ)=∫−∞+∞cos(λx)(1+ix)2dx1)extractRe(I(λ))andIm(I(λ))2)calculateI(λ)3)concludethevaluesofRe(I(λ))andIm(I(λ)).
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
1)wehaveI(λ)=∫−∞+∞cos(λx)(1−ix)2(1+ix)2(1−ix)2=∫−∞+∞cos(λx)(1−ix)2(1+x2)2dx=∫−∞+∞cos(λx)(1−2ix−x2)(1+x2)2dx=∫−∞+∞(1−x2)cos(λx)−2ixcos(λx)(1+x2)2dx=∫−∞+∞(1−x2)cos(λx)(1+x2)2dx−i∫−∞+∞xcos(λx)(1+x2)2dx⇒Re(I(λ))=∫−∞+∞(1−x2)cos(λx)(1+x2)2dxandIm(I(λ))=−∫−∞+∞xcos(λx)(1+x2)2dx=02)I(λ)=Re(∫−∞+∞eiλx(1+ix)2dx)letφ(z)=eiλz(1+iz)2polesofφ?φ(z)=eiλz(iz−i2)2=eiλz(−1)(z−i)2=−eiλz(z−i)2soisadoublepoleforφ∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{−eiλz}(1)=limz→i−iλeiλz=−iλe−λ⇒∫−∞+∞φ(z)dz=2iπ(−iλe−λ)=2πλe−λ⇒I(I(λ))=2πλe−λ3)Re(I(λ))=∫−∞+∞(1−x2)cos(λx)(1+x2)2dx=2πλe−λandIm(I(λ))=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com