Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30764 by abdo imad last updated on 25/Feb/18

let  I_n = ∫_0 ^(1/2)  (1−2t)^n  e^(−t) dt  with n integr not 0  1) prove that ∀t∈[0,(1/2)]  (1/(√e))(1−2t)^n ≤ (1−2t)^n  e^(−t)  ≤(1−2t)^n  then find lim_(n→∞ ) I_n   2) prove that I_(n+1 ) =1−2(n+1)I_n   3) calculate I_1 ,I_2 , and I_3 .

letIn=012(12t)netdtwithnintegrnot01)provethatt[0,12]1e(12t)n(12t)net(12t)nthenfindlimnIn2)provethatIn+1=12(n+1)In3)calculateI1,I2,andI3.

Commented by abdo imad last updated on 01/Mar/18

1) for 0≤t≤(1/2) we have( 1−2t)^n ≥0  1≤e^t ≤ (√e) ⇒(1/(√e))≤e^(−t) ≤1  ⇒ (1/(√e))(1−2t)^n  ≤(1−2t)^n  e^(−t) ≤ (1−2t)^n  ⇒  (1/(√e)) ∫_0 ^(1/2) (1−2t)^n dt ≤ ∫_0 ^(1/2) (1−2t)^n  e^(−t) dt ≤ ∫_0 ^(1/2)  (1−2t)^n dt but  (1/(√e))∫_0 ^(1/2) (1−2t)^n dt=(1/(√e)) [ ((−1)/(2(n+1))) (1−2t)^(n+1) ]_0 ^(1/2) = (1/(2(n+1)(√e)))  ⇒ (1/(2(n+1)(√e)))≤ I_n ≤  (1/(2(n+1))) and its clear that   lim_(n→∞)  I_n =0  2) let integrate by parts u^′  =(1−2t)^n  and v=e^(−t)   I_n =[((−1)/(2(n+1)))(1−2t)^(n+1)  e^(−t) ]_0 ^(1/2)  +∫_0 ^(1/2)  ((−1)/(2(n+1)))(1−2t)^(n+1)  e^(−t) dt  =(1/(2(n+1))) −(1/(2(n+1))) I_(n+1)   ⇒2(n+1)I_n =1−I_(n+1)  ⇒  I_(n+1) =1−2(n+1)I_n   3)I_1 =1−2I_0  but I_0 = ∫_0 ^(1/2)  e^(−t) dt =[ −e^(−t) ]_0 ^(1/2) =1−e^((−1)/2) =1−(1/(√e))  I_2 =1−4I_1 =1−4(1−(1/(√e)))=−3 +(4/(√e)).  I_3 = 1−6 I_(2 ) =1−6(−3 +(4/(√e)))=19 −((24)/(√e))  .

1)for0t12wehave(12t)n01ete1eet11e(12t)n(12t)net(12t)n1e012(12t)ndt012(12t)netdt012(12t)ndtbut1e012(12t)ndt=1e[12(n+1)(12t)n+1]012=12(n+1)e12(n+1)eIn12(n+1)anditsclearthatlimnIn=02)letintegratebypartsu=(12t)nandv=etIn=[12(n+1)(12t)n+1et]012+01212(n+1)(12t)n+1etdt=12(n+1)12(n+1)In+12(n+1)In=1In+1In+1=12(n+1)In3)I1=12I0butI0=012etdt=[et]012=1e12=11eI2=14I1=14(11e)=3+4e.I3=16I2=16(3+4e)=1924e.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com