All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30764 by abdo imad last updated on 25/Feb/18
letIn=∫012(1−2t)ne−tdtwithnintegrnot01)provethat∀t∈[0,12]1e(1−2t)n⩽(1−2t)ne−t⩽(1−2t)nthenfindlimn→∞In2)provethatIn+1=1−2(n+1)In3)calculateI1,I2,andI3.
Commented by abdo imad last updated on 01/Mar/18
1)for0⩽t⩽12wehave(1−2t)n⩾01⩽et⩽e⇒1e⩽e−t⩽1⇒1e(1−2t)n⩽(1−2t)ne−t⩽(1−2t)n⇒1e∫012(1−2t)ndt⩽∫012(1−2t)ne−tdt⩽∫012(1−2t)ndtbut1e∫012(1−2t)ndt=1e[−12(n+1)(1−2t)n+1]012=12(n+1)e⇒12(n+1)e⩽In⩽12(n+1)anditsclearthatlimn→∞In=02)letintegratebypartsu′=(1−2t)nandv=e−tIn=[−12(n+1)(1−2t)n+1e−t]012+∫012−12(n+1)(1−2t)n+1e−tdt=12(n+1)−12(n+1)In+1⇒2(n+1)In=1−In+1⇒In+1=1−2(n+1)In3)I1=1−2I0butI0=∫012e−tdt=[−e−t]012=1−e−12=1−1eI2=1−4I1=1−4(1−1e)=−3+4e.I3=1−6I2=1−6(−3+4e)=19−24e.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com