All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36413 by abdo.msup.com last updated on 01/Jun/18
letIn=∫01xn3+xdx1)calculatelimn→+∞In2)calculatelimn→+∞nIn
Commented by abdo.msup.com last updated on 04/Jun/18
1)wehave0⩽x⩽1⇒3⩽3+x⩽4⇒3⩽3+x⩽2⇒∫013xndx⩽In⩽∫012xndx⇒3n+1⩽In⩽2n+1→n→+∞0solimn→+∞In=02)bypartsIn=[1n+1xn+13+x]01−∫01xn+1n+1123+xdx=2n+1−12(n+1)∫01xn+13+xdx⇒nIn=2nn+1−n2n+2∫01xn+13+xdxbut3⩽3+x⩽2⇒12⩽13+x⩽3⇒xn+12⩽xn+13+x⩽3xn+1⇒∫01xn+12dx⩽∫01xn+13+xdx⩽3∫01xn+1dx⇒12(n+2)⩽∫01xn+13+xdx⩽3n+1solimn→+∞∫01xn+13+xdx=0⇒limnIn=2(n→+∞)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com