Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36413 by abdo.msup.com last updated on 01/Jun/18

let  I_n = ∫_0 ^1  x^n (√(3+x))dx  1)calculate lim_(n→+∞) I_n   2) calculate lim_(n→+∞)  n I_n

letIn=01xn3+xdx1)calculatelimn+In2)calculatelimn+nIn

Commented by abdo.msup.com last updated on 04/Jun/18

1) we have 0≤x≤1  ⇒ 3≤3+x≤4 ⇒  (√3) ≤(√(3+x))≤2  ⇒ ∫_0 ^1 (√3) x^n dx≤I_n ≤∫_0 ^1  2x^n dx  ⇒ ((√3)/(n+1))  ≤ I_n ≤ (2/(n+1)) →_(n→+∞) 0 so  lim_(n→+∞)  I_n =0  2) by parts  I_n  =[ (1/(n+1))x^(n+1) (√(3+x))]_0 ^1   −∫_0 ^1  (x^(n+1) /(n+1))  (1/(2(√(3+x))))dx  =(2/(n+1))  −(1/(2(n+1))) ∫_0 ^1     (x^(n+1) /(√(3+x)))dx⇒  nI_n  = ((2n)/(n+1)) −(n/(2n+2)) ∫_0 ^1   (x^(n+1) /(√(3+x)))dx but            (√3)≤(√(3+x))≤2 ⇒ (1/2) ≤ (1/(√(3+x)))≤(√3)  ⇒ (x^(n+1) /2) ≤ (x^(n+1) /(√(3+x))) ≤ (√3) x^(n+1)  ⇒   ∫_0 ^1   (x^(n+1) /2)dx≤ ∫_0 ^1    (x^(n+1) /(√(3+x)))dx≤ (√3)∫_0 ^1  x^(n+1) dx  ⇒ (1/(2(n+2))) ≤ ∫_0 ^1  (x^(n+1) /(√(3+x)))dx≤ ((√3)/(n+1)) so  lim_(n→+∞)  ∫_0 ^1   (x^(n+1) /(√(3+x)))dx =0 ⇒  lim n I_n  =2 (n→+∞)

1)wehave0x133+x433+x2013xndxIn012xndx3n+1In2n+1n+0solimn+In=02)bypartsIn=[1n+1xn+13+x]0101xn+1n+1123+xdx=2n+112(n+1)01xn+13+xdxnIn=2nn+1n2n+201xn+13+xdxbut33+x21213+x3xn+12xn+13+x3xn+101xn+12dx01xn+13+xdx301xn+1dx12(n+2)01xn+13+xdx3n+1solimn+01xn+13+xdx=0limnIn=2(n+)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com