Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38114 by maxmathsup by imad last updated on 21/Jun/18

let I_n = ∫_0 ^(2π)     (dx/((p +cost)^n ))  with p>1  find the value of I_n

letIn=02πdx(p+cost)nwithp>1findthevalueofIn

Commented by abdo mathsup 649 cc last updated on 08/Jul/18

changement  e^(it) =z give   I_n = ∫_(∣z∣=1)    (1/((p +((z+z^(−1) )/2))^n )) (dz/(iz))  = ∫_(∣z∣=1)   ((−i 2^n )/((2p +z+z^(−1) )^n )) (dz/z)  = ∫_(∣z∣=1)        ((−i 2^n )/(z{2p +z +(1/z)}^n ))dz  = ∫_(∣z∣=1)      ((−i2^n  z^(n−1) )/({2pz +z^2  +1}^n ))dz  let  ϕ(z) =  ((−i 2^n z^(n−1) )/((z^2  +2pz +1)^n ))  poles of ϕ?  z^2  +2pz +1=0  Δ^′  =p^2  −1>0 ⇒ real roots  z_1 =−p +(√(p^2  −1 ))    and z_2 =−p−(√(p^2  −1))  we have proved that ∣z_1 ∣<1  and ∣z_2 ∣>1 so  ∫_(∣z∣=1) ^  ϕ(z)dz  =2iπ Res(ϕ,z_1 )  we?have  ϕ(z) = ((−i 2^n z^(n−1) )/((z−z_1 )^n (z−z_2 )^n )) ⇒  Res(ϕ,z_1 ) =lim_(z→z_1 )   (1/((n−1)!)){ (z−z_1 )^n  ϕ(z)}^((n−1))   =−i 2^n  lim_(z→z_1 ) (1/((n−1)!)){  (z^(n−1) /((z−z_2 )^n ))}^()n−1))   but  { z^(n−1) (z−z_2 )^(−n) }^((n−1))   = Σ_(k=0) ^(n−1 )    C_(n−1) ^(k )   {(z−z_2 )^(−n) }^((k))  (z^(n−1) )^((n−1−k))   we have  (z−z_2 )^(−n) }^((1)) =−n(z−z_2 )^(−n−1)   {(z−z_2 )^(−n) }^((2)) =(−1)^2 n(n+1)(z−z_2 )^(−n−2)   { (z−z_2 )^(−n) }^((k)) =(−1)^k n(n+1)...(n+k−1)(z−z_2 )^(−n−k)   also  (z^n )^((p)) =n(n−1)...(n−p+1)z^(n−p)   if p≤n⇒  (z^(n−1) )^((n−1−k)) =(n−1)(n−2)...(n−1−n+1+k +1)z^(n−1−n+1+k)   =(n−1)(n−2).....(k+1) z^k   =(((n−1)!)/(k!)) z^k  ⇒  {z^(n−1) (z−z_2 )^(−n) }^((n−1)) =  =Σ_(k=0) ^(n−1)   C_(n−1) ^k  (−1)^k  n(n+1)...(n+k−1)(z−z_2 )^(−n−k)  (((n−1)!)/(k!)) z^k   Res(ϕ,z_1 )=  −i 2^n   Σ_(k=0) ^(n−1)   C_(n−1) ^k (−1)^k n(n+1)...(n+k−1)(z_1 −z_2 )^(−n−k)  (z_1 ^k /(k!))  ∫_(∣z∣=1) ϕ(z)dz =π 2^(n+1)  A_n   with  A_n  =Σ_(k=0) ^(n−1)   C_(n−1) ^k (−1)^k n(n+1)...(n+k−1)(2(√(p^2  −1)))^(−n−k)  (((−p+(√(p^2  −1)))^k )/(k!))  = I_p

changementeit=zgiveIn=z∣=11(p+z+z12)ndziz=z∣=1i2n(2p+z+z1)ndzz=z∣=1i2nz{2p+z+1z}ndz=z∣=1i2nzn1{2pz+z2+1}ndzletφ(z)=i2nzn1(z2+2pz+1)npolesofφ?z2+2pz+1=0Δ=p21>0realrootsz1=p+p21andz2=pp21wehaveprovedthatz1∣<1andz2∣>1soz∣=1φ(z)dz=2iπRes(φ,z1)we?haveφ(z)=i2nzn1(zz1)n(zz2)nRes(φ,z1)=limzz11(n1)!{(zz1)nφ(z)}(n1)=i2nlimzz11(n1)!{zn1(zz2)n})n1)but{zn1(zz2)n}(n1)=k=0n1Cn1k{(zz2)n}(k)(zn1)(n1k)wehave(zz2)n}(1)=n(zz2)n1{(zz2)n}(2)=(1)2n(n+1)(zz2)n2{(zz2)n}(k)=(1)kn(n+1)...(n+k1)(zz2)nkalso(zn)(p)=n(n1)...(np+1)znpifpn(zn1)(n1k)=(n1)(n2)...(n1n+1+k+1)zn1n+1+k=(n1)(n2).....(k+1)zk=(n1)!k!zk{zn1(zz2)n}(n1)==k=0n1Cn1k(1)kn(n+1)...(n+k1)(zz2)nk(n1)!k!zkRes(φ,z1)=i2nk=0n1Cn1k(1)kn(n+1)...(n+k1)(z1z2)nkz1kk!z∣=1φ(z)dz=π2n+1AnwithAn=k=0n1Cn1k(1)kn(n+1)...(n+k1)(2p21)nk(p+p21)kk!=Ip

Commented by abdo mathsup 649 cc last updated on 08/Jul/18

I_n = ∫_(∣z∣=1)  ϕ(z)dz =π 2^(n+1)  A_n

In=z∣=1φ(z)dz=π2n+1An

Terms of Service

Privacy Policy

Contact: info@tinkutara.com