All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38114 by maxmathsup by imad last updated on 21/Jun/18
letIn=∫02πdx(p+cost)nwithp>1findthevalueofIn
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
changementeit=zgiveIn=∫∣z∣=11(p+z+z−12)ndziz=∫∣z∣=1−i2n(2p+z+z−1)ndzz=∫∣z∣=1−i2nz{2p+z+1z}ndz=∫∣z∣=1−i2nzn−1{2pz+z2+1}ndzletφ(z)=−i2nzn−1(z2+2pz+1)npolesofφ?z2+2pz+1=0Δ′=p2−1>0⇒realrootsz1=−p+p2−1andz2=−p−p2−1wehaveprovedthat∣z1∣<1and∣z2∣>1so∫∣z∣=1φ(z)dz=2iπRes(φ,z1)we?haveφ(z)=−i2nzn−1(z−z1)n(z−z2)n⇒Res(φ,z1)=limz→z11(n−1)!{(z−z1)nφ(z)}(n−1)=−i2nlimz→z11(n−1)!{zn−1(z−z2)n})n−1)but{zn−1(z−z2)−n}(n−1)=∑k=0n−1Cn−1k{(z−z2)−n}(k)(zn−1)(n−1−k)wehave(z−z2)−n}(1)=−n(z−z2)−n−1{(z−z2)−n}(2)=(−1)2n(n+1)(z−z2)−n−2{(z−z2)−n}(k)=(−1)kn(n+1)...(n+k−1)(z−z2)−n−kalso(zn)(p)=n(n−1)...(n−p+1)zn−pifp⩽n⇒(zn−1)(n−1−k)=(n−1)(n−2)...(n−1−n+1+k+1)zn−1−n+1+k=(n−1)(n−2).....(k+1)zk=(n−1)!k!zk⇒{zn−1(z−z2)−n}(n−1)==∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(z−z2)−n−k(n−1)!k!zkRes(φ,z1)=−i2n∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(z1−z2)−n−kz1kk!∫∣z∣=1φ(z)dz=π2n+1AnwithAn=∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(2p2−1)−n−k(−p+p2−1)kk!=Ip
In=∫∣z∣=1φ(z)dz=π2n+1An
Terms of Service
Privacy Policy
Contact: info@tinkutara.com