Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36187 by prof Abdo imad last updated on 30/May/18

let I_n (x)= ∫_0 ^∞    ((t sin(t))/((t^2  +x^2 )^n ))dt   1) find a relation between I_(n+1)   and I_n   2) calculate I_2 (x) and I_3 (x)   3) calculate  ∫_0 ^∞  ((tsin(t))/((2+t^2 )^2 ))dt

letIn(x)=0tsin(t)(t2+x2)ndt1)findarelationbetweenIn+1andIn2)calculateI2(x)andI3(x)3)calculate0tsin(t)(2+t2)2dt

Commented by maxmathsup by imad last updated on 15/Aug/18

3)  let  A = ∫_0 ^∞    ((t sint)/((2+t^2 )^2 )) dt  changement t =(√2)x give  A =∫_0 ^∞      (((√2)xsin((√2)x))/(4(1+x^2 ))) (√2)dx =(1/2) ∫_0 ^∞   ((xsin(x(√2)))/((x^2 +1)^2 ))dx  =(1/4) ∫_(−∞) ^(+∞)   ((x sin(x(√2)))/((x^2  +1)^2 ))dx ⇒  4A = Im( ∫_(−∞) ^(+∞)     ((x e^(ix(√2)) )/((x^2  +1)^2 ))) let considere the complex function  ϕ(z) = ((z e^(iz(√2)) )/((z^2  +1)^2 )) ⇒ϕ(z) =  ((z e^(iz(√2)) )/((z−i)^2 (z+i)^2 ))  so the poles of ϕ are i and −i  (doubles) residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  but  Res(ϕ,i) =lim_(z→i)     (1/((2−1)! ))  {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {  ((z e^(iz(√2)) )/((z+i)^2 ))}^((1))  =lim_(z→i)   (((e^(iz(√2))  +i(√2)z e^(iz(√2)) )(z+i)^2 −2(z+i)ze^(iz(√2)) )/((z+i)^4 ))  =lim_(z→i)    (((z+i) (e^(iz(√2)) +i(√2)z e^(iz(√2)) )−2 z e^(iz(√2)) )/((z+i)^3 ))  =(((2i)( e^(−(√2))  −(√2)e^(−(√2)) )−2i e^(−(√2)) )/((2i)^3 ))  ((−2(√2)i e^(−(√2)) )/(−8i)) = ((√2)/4) e^(−(√2))    ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((√2)/4) e^(−(√2))   =((iπ(√2))/2) e^(−(√2))   4A =Im( ∫_(−∞) ^(+∞)  ϕ(z)dz ) =((π(√2))/2) e^(−(√2))  ⇒ A =((π(√2))/8) e^(−(√2))   .

3)letA=0tsint(2+t2)2dtchangementt=2xgiveA=02xsin(2x)4(1+x2)2dx=120xsin(x2)(x2+1)2dx=14+xsin(x2)(x2+1)2dx4A=Im(+xeix2(x2+1)2)letconsiderethecomplexfunctionφ(z)=zeiz2(z2+1)2φ(z)=zeiz2(zi)2(z+i)2sothepolesofφareiandi(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{zeiz2(z+i)2}(1)=limzi(eiz2+i2zeiz2)(z+i)22(z+i)zeiz2(z+i)4=limzi(z+i)(eiz2+i2zeiz2)2zeiz2(z+i)3=(2i)(e22e2)2ie2(2i)322ie28i=24e2+φ(z)dz=2iπ24e2=iπ22e24A=Im(+φ(z)dz)=π22e2A=π28e2.

Commented by maxmathsup by imad last updated on 19/Aug/18

2) we have I_2 (x)= ∫_0 ^∞     ((t sint)/((t^2  +x^2 )^2 )) dt  =(1/2)  ∫_(−∞) ^(+∞)   ((tsint)/((t^2  +x^2 )^2 ))dt ⇒  2I_2 (x) =Im( ∫_(−∞) ^(+∞)    ((t e^(it) )/((t^2  +x^2 )^2 ))dt)=Im(A(x))  changement t=xu give  A(x) = ∫_(−∞) ^(+∞)    ((xu e^(ixu) )/(x^4 (1+u^2 )^2 )) x du  = (1/x^2 ) ∫_(−∞) ^(+∞)    ((u e^(ixu) )/((u^2  +1)^2 )) du (we suppose x>0)  let consider the complex function ϕ(z) =((z e^(ixz) )/((z^2  +1)^2 ))  ϕ(z) =((z e^(ixz) )/((z−i)^2 (z+i)^2 ))  the poles of ϕ are i and −i(doubles) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i)  but  Res(ϕ,i) =lim_(z→i)  (1/((2−1!)) {  (z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    { ((z e^(ixz) )/((z+i)^2 ))}^((1)) =lim_(z→i)   (((e^(ixz)   +ixz e^(ixz) )(z+i)^2  −2(z+i)z e^(ixz) )/((z+i)^4 ))  =lim_(z→i)    (((1+ixz)e^(ixz) (z+i)−2z e^(ixz) )/((z+i)^3 ))  =(((1−x)e^(−x) (2i)−2i e^(−x) )/((2i)^3 ))  = ((2i(1−x)e^(−x)  −2i e^(−x) )/(−8i))  =(((2−2x−2)e^(−x) )/(−8)) = ((x e^(−x) )/4) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((x e^(−x) )/4) =((iπ)/2) x e^(−x)  ⇒  2I_2 (x) = ((πx)/2) e^(−x)  ⇒ I_2 (x) =((πx)/4) e^(−x)   .  if  x<0  x =−α  with α>0 ⇒I_2 (x)=I_2 (−α) =∫_0 ^∞   ((tsint)/((t^2  +α^2 )^2 )) =I_2 (α)  =((πα)/4) e^(−α)   =−((πx)/4) e^x  .

2)wehaveI2(x)=0tsint(t2+x2)2dt=12+tsint(t2+x2)2dt2I2(x)=Im(+teit(t2+x2)2dt)=Im(A(x))changementt=xugiveA(x)=+xueixux4(1+u2)2xdu=1x2+ueixu(u2+1)2du(wesupposex>0)letconsiderthecomplexfunctionφ(z)=zeixz(z2+1)2φ(z)=zeixz(zi)2(z+i)2thepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(21!{(zi)2φ(z)}(1)=limzi{zeixz(z+i)2}(1)=limzi(eixz+ixzeixz)(z+i)22(z+i)zeixz(z+i)4=limzi(1+ixz)eixz(z+i)2zeixz(z+i)3=(1x)ex(2i)2iex(2i)3=2i(1x)ex2iex8i=(22x2)ex8=xex4+φ(z)dz=2iπxex4=iπ2xex2I2(x)=πx2exI2(x)=πx4ex.ifx<0x=αwithα>0I2(x)=I2(α)=0tsint(t2+α2)2=I2(α)=πα4eα=πx4ex.

Commented by maxmathsup by imad last updated on 19/Aug/18

error at the final line  we have A(x)=(1/x^2 ) ∫_(−∞) ^(+∞)  ϕ(z)dz   =(1/x^2 ) ((iπ)/2) x e^(−x)  =((iπ)/(2x)) e^(−x)   ⇒I_2 (x)=(1/2) Im(A(x))=(1/2) (π/(2x)) e^(−x)  ⇒  I_2 (x) =(π/(4x)) e^(−x)    with x>0  and if x<0  I_2 (x)=−(π/(4x)) e^x    .

erroratthefinallinewehaveA(x)=1x2+φ(z)dz=1x2iπ2xex=iπ2xexI2(x)=12Im(A(x))=12π2xexI2(x)=π4xexwithx>0andifx<0I2(x)=π4xex.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com