Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 159379 by HongKing last updated on 16/Nov/21

let  S(x) =Σ_(n=0) ^∞ (3x)^(n+2)   using the sum above find:  Σ_(n=0) ^∞  (((-1)^(n+1) )/(3^(n+1) (n + 3)))

letS(x)=n=0(3x)n+2usingthesumabovefind:n=0(1)n+13n+1(n+3)

Answered by Ar Brandon last updated on 16/Nov/21

Σ_(n=0) ^∞ (−(1/3))^(n+1) (1/(n+3))=Σ_(n=0) ^∞ (−(1/3))^(n+1) ∫_0 ^1 x^(n+2) dx  =−3Σ_(n=0) ^∞ (−(1/3))^(n+2) ∫_0 ^1 x^(n+2) dx=−3∫_0 ^1 Σ_(n=0) ^∞ (−(x/3))^(n+2) dx  =−3∫_0 ^1 ((x^2 /9)/(1+(x/3)))dx=−∫_0 ^1 (x^2 /(3+x))dx=−∫_0 ^1 (((x+3)^2 −6(x+3)+9)/(x+3))dx  =−[(x^2 /2)+3x−6x+9ln(x+3)]_0 ^1 =9ln3+(5/2)−9ln4=(5/2)+9ln((3/4))

n=0(13)n+11n+3=n=0(13)n+101xn+2dx=3n=0(13)n+201xn+2dx=301n=0(x3)n+2dx=301x291+x3dx=01x23+xdx=01(x+3)26(x+3)+9x+3dx=[x22+3x6x+9ln(x+3)]01=9ln3+529ln4=52+9ln(34)

Commented by HongKing last updated on 16/Nov/21

thank you so much my dear Ser cool

thankyousomuchmydearSercool

Commented by HongKing last updated on 16/Nov/21

my dear Ser, but they said use the first  sum S(x) to evaluate the new one

mydearSer,buttheysaidusethefirstsumS(x)toevaluatethenewone

Commented by Ar Brandon last updated on 16/Nov/21

Answered by Ar Brandon last updated on 16/Nov/21

S(x)=Σ_(n=0) ^∞ (3x)^(n+2) =((9x^2 )/(1−3x))=(((1−3x)^2 −2(1−3x)+1)/(1−3x))  ∫S(x)dx=(1/3)Σ_(n=0) ^∞ (((3x)^(n+3) )/(n+3))+C=x−(3/2)x^2 −2x−((ln(1−3x))/3)+C  ∫S(0)dx=0=C⇒∫S(x)dx=(1/3)Σ_(n=0) ^∞ (((3x)^(n+3) )/(n+3))=−x−(3/2)x^2 −((ln(1−3x))/3)  ∫S(−(1/9))dx=(1/3)Σ_(n=0) ^∞ (((−1)^(n+3) )/(3^(n+3) (n+3)))=(1/9)−(1/(54))−(1/3)ln((4/3))  ⇒Σ_(n=0) ^∞ (((−1)^(n+1) )/(3^(n+1) (n+3)))=3−(1/2)−9ln((4/3))=(5/2)−9ln((4/3))

S(x)=n=0(3x)n+2=9x213x=(13x)22(13x)+113xS(x)dx=13n=0(3x)n+3n+3+C=x32x22xln(13x)3+CS(0)dx=0=CS(x)dx=13n=0(3x)n+3n+3=x32x2ln(13x)3S(19)dx=13n=0(1)n+33n+3(n+3)=1915413ln(43)n=0(1)n+13n+1(n+3)=3129ln(43)=529ln(43)

Commented by HongKing last updated on 16/Nov/21

perfect, thank you so much my dear Ser

perfect,thankyousomuchmydearSer

Commented by Ar Brandon last updated on 16/Nov/21

You're welcome, Sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com