Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65297 by mathmax by abdo last updated on 28/Jul/19

let   U_n   a sequence wich verify  U_n  +U_(n+1) +U_(n+2)  =n(−1)^n   for all integr n   calculate interms of n  A_n =Σ_(k=0) ^n  (−1)^k  U_k   the first term is U_0

letUnasequencewichverifyUn+Un+1+Un+2=n(1)nforallintegrncalculateintermsofnAn=k=0n(1)kUkthefirsttermisU0

Commented by mathmax by abdo last updated on 29/Jul/19

we have u_n  +u_(n+1)  +u_(n+2) =n(−1)^n  ⇒  Σ_(k=0) ^n (−1)^k  (u_k  +u_(k+1) )+Σ_(k=0) ^n (−1)^k  u_(k+2) =Σ_(k=0) ^n  k(−1)^k   Σ_(k=0) ^n (−1)^k (u_k  +u_(k+1) ) =u_0 +u_1 −u_1 −u_2  +....(−1)^(n−1) (u_(n−1)  +u_n )  +(−1)^n (u_n  +u_(n+1) ) =u_0  +(−1)^n u_(n+1) ⇒  Σ_(k=0) ^n (−1)^k u_(k+2) =Σ_(k=0) ^n k(−1)^k −u_0 −(−1)^n u_(n+1)   Σ_(k=2) ^(n+2) (−1)^(k−2)  u_k =Σ_(k=0) ^n k(−1)^k −u_0 −(−1)^n u_(n+1) ⇒  Σ_(k=0) ^(n+2) (−1)^k u_k −u_0 +u_1 =Σ_(k=0) ^n k(−1)^k −u_0 −(−1)^n u_(n+1)  ⇒  Σ_(k=0) ^n  (−1)^k  u_k   +(−1)^(n+1) u_(n+1) +(−1)^(n+2) u_(n+2) =  Σ_(k=0) ^n k(−1)^k −(−1)^n u_(n+1) −u_1 ⇒  A_n =Σ_(k=0) ^n k(−1)^k −(−1)^n u_(n+1) +(−1)^n u_(n+1) −(−1)^n u_(n+2)  −u_1   =Σ_(k=0) ^n k(−1)^k   −(−1)^n u_(n+2) −u_1   let p(x) =Σ_(k=0) ^n  x^k  ⇒p^′ (x) =Σ_(k=1) ^n kx^(k−1)  ⇒xp^′ (x) =Σ_(k=1) ^n kx^k   but p(x) =((x^(n+1) −1)/(x−1)) (x≠1) ⇒p^′ (x) =(((n+1)x^n (x−1)−(x^(n+1) −1))/((x−1)^2 ))  =((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 )) ⇒Σ_(k=0) ^n kx^k  =((nx^(n+2) −(n+1)x^(n+1)  +x)/((x−1)^2 ))  x=−1 ⇒Σ_(k=0) ^n  k(−1)^k  =((n(−1)^(n+2) −(n+1)(−1)^(n+1) −1)/4)  =((n(−1)^n +(n+1)(−1)^n −1)/4) =(((2n+1)(−1)^n −1)/4) ⇒  A_n =(((2n+1)(−1)^n −1)/4) −(−1)^n u_(n+2)  −u_1

wehaveun+un+1+un+2=n(1)nk=0n(1)k(uk+uk+1)+k=0n(1)kuk+2=k=0nk(1)kk=0n(1)k(uk+uk+1)=u0+u1u1u2+....(1)n1(un1+un)+(1)n(un+un+1)=u0+(1)nun+1k=0n(1)kuk+2=k=0nk(1)ku0(1)nun+1k=2n+2(1)k2uk=k=0nk(1)ku0(1)nun+1k=0n+2(1)kuku0+u1=k=0nk(1)ku0(1)nun+1k=0n(1)kuk+(1)n+1un+1+(1)n+2un+2=k=0nk(1)k(1)nun+1u1An=k=0nk(1)k(1)nun+1+(1)nun+1(1)nun+2u1=k=0nk(1)k(1)nun+2u1letp(x)=k=0nxkp(x)=k=1nkxk1xp(x)=k=1nkxkbutp(x)=xn+11x1(x1)p(x)=(n+1)xn(x1)(xn+11)(x1)2=nxn+1(n+1)xn+1(x1)2k=0nkxk=nxn+2(n+1)xn+1+x(x1)2x=1k=0nk(1)k=n(1)n+2(n+1)(1)n+114=n(1)n+(n+1)(1)n14=(2n+1)(1)n14An=(2n+1)(1)n14(1)nun+2u1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com