Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55274 by maxmathsup by imad last updated on 20/Feb/19

let ϕ(a) =∫_1 ^(√3)   arctan((a/x))dx  1) calculate ϕ(a) interms of a  2)  calculate ϕ^′ (a) at form of integral.  3) determine ϕ^((n)) (a)  at form of integral.  4) find the value of ∫_1 ^(√3)  arctan((2/x))dx .

letφ(a)=13arctan(ax)dx1)calculateφ(a)intermsofa2)calculateφ(a)atformofintegral.3)determineφ(n)(a)atformofintegral.4)findthevalueof13arctan(2x)dx.

Commented by maxmathsup by imad last updated on 24/Feb/19

1) changement (a/x) =t give x =(a/t) ⇒ϕ(a)=∫_a ^(a/(√3))    arctan(t)(((−a)/t^2 ))dt ⇒  ((ϕ(a))/a)= ∫_(a/(√3)) ^a      ((arctan(t))/t^2 ) dt  by parts we get ((ϕ(a))/a) =[−(1/t) arctan(t)]_(a/(√3)) ^a  +∫_(a/(√3)) ^a  (1/(t(1+t^2 )))dt  =((√3)/a) arctan((a/(√3))) −((arctan(a))/a) +∫_(a/(√3)) ^a    (dt/(t(1+t^2 )))dt but  ∫_(a/(√3)) ^a   (dt/(t(1+t^2 )))dt =∫_(a/(√3)) ^a  ((1/t) −(t/(1+t^2 )))dt = [ln((t/(√(1+t^2 ))))]_(a/(√3)) ^a =ln((a/(√(1+a^2 ))))  −ln((a/((√3)((√(1+(a^2 /3))))))=ln((a/(√(1+a^2 ))))−ln((a/(√(a^2 +3))))  =ln(a)−(1/2)ln(1+a^2 )−ln(a)+(1/2)ln(a^2  +3) =(1/2){ln(a^2 +3)−ln(a^2  +1)} ⇒  ((ϕ(a))/a) =((√3)/a) arctan((a/(√3)))−((arctan(a))/a) +ln((√((a^2 +3)/(a^2 +1))))  ⇒  ϕ(a) =(√3)arctan((a/(√3)))−arctan(a) +aln((√((a^2  +3)/(a^2  +1)))) .

1)changementax=tgivex=atφ(a)=aa3arctan(t)(at2)dtφ(a)a=a3aarctan(t)t2dtbypartswegetφ(a)a=[1tarctan(t)]a3a+a3a1t(1+t2)dt=3aarctan(a3)arctan(a)a+a3adtt(1+t2)dtbuta3adtt(1+t2)dt=a3a(1tt1+t2)dt=[ln(t1+t2)]a3a=ln(a1+a2)ln(a3(1+a23)=ln(a1+a2)ln(aa2+3)=ln(a)12ln(1+a2)ln(a)+12ln(a2+3)=12{ln(a2+3)ln(a2+1)}φ(a)a=3aarctan(a3)arctan(a)a+ln(a2+3a2+1)φ(a)=3arctan(a3)arctan(a)+aln(a2+3a2+1).

Commented by maxmathsup by imad last updated on 24/Feb/19

2) we have ϕ^′ (a) =∫_1 ^(√3) (1/(x(1+(a^2 /x^2 )))) dx = ∫_1 ^(√3)    (x/(x^2  +a^2 )) dx .

2)wehaveφ(a)=131x(1+a2x2)dx=13xx2+a2dx.

Commented by maxmathsup by imad last updated on 24/Feb/19

4) we have ϕ(a) =∫_1 ^(√3)   arctan((a/x))dx ⇒  ∫_1 ^(√3)   arctan((2/x))dx =ϕ(2) =(√3)arctan((2/(√3)))−arctan(2) +2 ln((√(7/5)))  =(√3)arctan((2/(√3)))−arctan(2) +ln(7)−ln(5) .

4)wehaveφ(a)=13arctan(ax)dx13arctan(2x)dx=φ(2)=3arctan(23)arctan(2)+2ln(75)=3arctan(23)arctan(2)+ln(7)ln(5).

Commented by maxmathsup by imad last updated on 24/Feb/19

3) we have ϕ^((1)) (a) =∫_1 ^(√3)   (x/(x^2  +a^2 ))dx ⇒ϕ^((n)) (a) =∫_1 ^(√3) (d^(n−1) /da^(n−1) )  ((x/(x^2  +a^2 ))) dx  let  =∫_1 ^(√3)   x {(1/(x^2  +a^2 ))}_(/a) ^((n−1))   dx =∫_1 ^(√3)  (1/(2i)) {(1/(a−ix)) −(1/(a+ix))}_(/a) ^((n−1)) dx  =(1/(2i)) ∫_1 ^(√3)    {  (((−1)^(n−1) (n−1)!)/((a−ix)^n )) −(((−1)^(n−1) (n−1)!)/((a+ix)^n ))}dx  =(((−1)^(n−1) (n−1)!)/(2i)) ∫_1 ^(√3)   (((a+ix)^n −(a−ix)^n )/((a^2  +x^2 )^n )) dx  =(−1)^(n−1) (n−1)! ∫_1 ^(√3)    ((Im((a+ix)^n ))/((a^2  +x^2 )^n )) dx .

3)wehaveφ(1)(a)=13xx2+a2dxφ(n)(a)=13dn1dan1(xx2+a2)dxlet=13x{1x2+a2}/a(n1)dx=1312i{1aix1a+ix}/a(n1)dx=12i13{(1)n1(n1)!(aix)n(1)n1(n1)!(a+ix)n}dx=(1)n1(n1)!2i13(a+ix)n(aix)n(a2+x2)ndx=(1)n1(n1)!13Im((a+ix)n)(a2+x2)ndx.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com