Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16110 by vpawarksp@gmail.com last updated on 18/Jun/17

let a_1 >a_2 >0 and a_(n+1) =(√(a_n a_(n−1   ) ))  where n is greater than equal to 2   Then  The sequence {a_(2n) } is   (1) monotonic increasing  (2)monotonic decreasing  (3)non monotonic  (4)unbounded

leta1>a2>0andan+1=anan1wherenisgreaterthanequalto2ThenThesequence{a2n}is(1)monotonicincreasing(2)monotonicdecreasing(3)nonmonotonic(4)unbounded

Commented by RasheedSoomro last updated on 18/Jun/17

let a_1 >a_2 >0 and a_(n+1) =(√(a_n a_(n−1   ) ))  a_n =(((a_(n+1) )^2 )/a_(n−1) )...............(i)  n→n−1⇒a_n =(√(a_(n−1) a_(n−2) )).........(ii)  (i) & (ii)  (((a_(n+1) )^2 )/a_(n−1) )=(√(a_(n−1) a_(n−2) ))

leta1>a2>0andan+1=anan1an=(an+1)2an1...............(i)nn1an=an1an2.........(ii)(i)&(ii)(an+1)2an1=an1an2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com