Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46850 by maxmathsup by imad last updated on 01/Nov/18

let a^2 >b^(2 ) +c^2   calculate ∫_0 ^(2π)   (dθ/(a+bsinθ +c cosθ))

leta2>b2+c2calculate02πdθa+bsinθ+ccosθ

Commented by maxmathsup by imad last updated on 01/Nov/18

residus method  let I = ∫_0 ^(2π)    (dθ/(a+bsinθ +ccosθ))  changement z =e^(iθ)  give  I = ∫_(∣z∣=1)    (1/(a +b((z−z^(−1) )/(2i))+c((z+z^(−1) )/2))) (dz/(iz)) =∫_(∣z∣=1)   (dz/(iz{a+b((z−z^(−1) )/(2i))+c((z+z^(−1) )/2)}))  = ∫_(∣z∣=1)      ((2dz)/(z{2ia +b(z−z^(−1) )+ci(z+z^(−1) ) }))  = ∫_(∣z∣=1)     ((2dz)/(2iaz +bz^2 −b +ciz^2  +ci)) =∫_(∣z∣=1)    ((2dz)/((b+ci)z^2  +2iaz +ci−b))  let ϕ(z) =(2/((b+ci)z^2  +2iaz +ci−b)) .poles of ϕ?  Δ^′  =(ia)^2 −(b+ci)(ci−b) =−a^2  −((ci)^2 −b^2 )  =−a^2  +b^2  +c^2  =−(a^2 −(b^2  +c^2 ))<0 ⇒ z_1 =((−ia +i(√(a^2 −b^2 −c^2 )))/(b+ci))  z_2 =((−ia−i(√(a^2 −b^2 −c^2 )))/(b+ci))  ∣z_1 ∣−1 =((∣a−(√(a^2 −b^2 −c^2 ))∣)/(√(b^2  +c^2 ))) >1 ⇒z_1 is out of circle . ⇒Res(ϕ,z_1 )=0  ∣z_2 ∣−1 =((∣a+(√(a^2 −b^2 −c^2 ))∣ )/(√(b^2  +c^2 )))  >1 ⇒ z_2 is out of circle  ⇒Res(ϕ,z_(2 ) )=0  ∫_0 ^(2π)  ϕ(z)dz =0

residusmethodletI=02πdθa+bsinθ+ccosθchangementz=eiθgiveI=z∣=11a+bzz12i+cz+z12dziz=z∣=1dziz{a+bzz12i+cz+z12}=z∣=12dzz{2ia+b(zz1)+ci(z+z1)}=z∣=12dz2iaz+bz2b+ciz2+ci=z∣=12dz(b+ci)z2+2iaz+cibletφ(z)=2(b+ci)z2+2iaz+cib.polesofφ?Δ=(ia)2(b+ci)(cib)=a2((ci)2b2)=a2+b2+c2=(a2(b2+c2))<0z1=ia+ia2b2c2b+ciz2=iaia2b2c2b+ciz11=aa2b2c2b2+c2>1z1isoutofcircle.Res(φ,z1)=0z21=a+a2b2c2b2+c2>1z2isoutofcircleRes(φ,z2)=002πφ(z)dz=0

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18

t=tan(θ/2)   dt=sec^2 (θ/2)×(1/2)dθ  dθ=((2dt)/(1+t^2 ))  ∫((2dt)/((1+t^2 )(a+b×((2t)/(1+t^2 ))+c×((1−t^2 )/(1+t^2 )))))  ∫((2dt)/((a+at^2 +2bt+c−ct^2 )))  2∫(dt/(t^2 (a−c)+t(2b)+a+c))  (2/(a−c))∫(dt/(t^2 +2.t.(b/(a−c))+((a+c)/(a−c))))  (2/(a−c))∫(dt/((t+(b/(a−c)))^2 +((a+c)/(a−c))−(b^2 /((a−c)^2 ))))  (2/(a−c))∫(dt/((t+(b/(a−c)))^2 +((a^2 −c^2 −b^2 )/((a−c)^2 ))))  (2/(a−c))×(1/(√((a^2 −b^2 −c^2 )/((a−c)^2 ))))×tan^(−1) (((t+(b/(a−c)))/(√((a^2 −b^2 −c2)/((a−c)^2 )))))  =(2/(√(a^2 −b^2 −c^2 )))tan^(−1) (((t+(b/(a−c)))/(√(((a^2 −b^2 −c^2 )/((a−c)^2 )) ))))  when θ→0  t→0  θ→2π  t→0  thus value of inyregation zero  pls check where i am wrong..  since a^2 >(b^2 +c^2 )

t=tanθ2dt=sec2θ2×12dθdθ=2dt1+t22dt(1+t2)(a+b×2t1+t2+c×1t21+t2)2dt(a+at2+2bt+cct2)2dtt2(ac)+t(2b)+a+c2acdtt2+2.t.bac+a+cac2acdt(t+bac)2+a+cacb2(ac)22acdt(t+bac)2+a2c2b2(ac)22ac×1a2b2c2(ac)2×tan1(t+baca2b2c2(ac)2)=2a2b2c2tan1(t+baca2b2c2(ac)2)whenθ0t0θ2πt0thusvalueofinyregationzeroplscheckwhereiamwrong..sincea2>(b2+c2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com