Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67525 by mathmax by abdo last updated on 28/Aug/19

let a>b>0 calculate ∫_0 ^(2π)   (dx/((a+bsinx)^2 ))

leta>b>0calculate02πdx(a+bsinx)2

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

 let  consider  f(a,b)=∫_0 ^(2π)   (dx/(a+bsinx))   = (1/b) ∫_0 ^(2π) ((  dx)/((a/b) +sinx))    ∫_0 ^(2π) ((  dx)/(c+sinx)) =2iπΣ_(∣z_k ∣<1) Res(f(z),z_k )     with  f(z)=(1/(iz)) .(1/(c+((z−z^(−1) )/(2i))))=(2/( z^2 +2icz−1))=(2/((z−z_0 )(z−z_1 )))     with z_0 =−i(c+(√(c^2 −1  )) ) and  z_1 = −i(c−(√(c^2 −1)) )   we have  ∣z_0 ∣>1  and  ∣z_1 ∣<1   ∫_0 ^(2π)    (dx/(c+sinx))=2iπ (2/(z_1 −z_0 ))=((2π)/((√(c^2 −1)) ))  Now   f(a,b)=(1/b).((2π)/((√(((a/b))^2 −1)) ))=((2π)/((√(a^2 −b^2 )) ))   ((∂f(a,b))/∂a)= ∫_0 ^(2π)    (dx/((a+bsinx)^2 )) =2π ((−((2a)/(2(√(a^2 −b^2 )) )))/((a^2 −b^2 )))=((−4πa)/((a^2 −b^2 )^(3/2) ))

letconsiderf(a,b)=02πdxa+bsinx=1b02πdxab+sinx02πdxc+sinx=2iπzk∣<1Res(f(z),zk)withf(z)=1iz.1c+zz12i=2z2+2icz1=2(zz0)(zz1)withz0=i(c+c21)andz1=i(cc21)wehavez0∣>1andz1∣<102πdxc+sinx=2iπ2z1z0=2πc21Nowf(a,b)=1b.2π(ab)21=2πa2b2f(a,b)a=02πdx(a+bsinx)2=2π2a2a2b2(a2b2)=4πa(a2b2)32

Commented by mathmax by abdo last updated on 29/Aug/19

let  f(a) =∫_0 ^(2π)  (dx/(a+bsinx))  we have f^′ (a) =−∫_0 ^(2π)  (dx/((a+bsinx)^2 )) ⇒  ∫_0 ^(2π)  (dx/((a+bsinx)^2 )) =−f^′ (a)  changement e^(ix)  =z give  f(a)=∫_(∣z∣=1)    (dz/(iz{a+b((z−z^(−1) )/(2i))})) =∫_(∣z∣=1)    ((2idz)/(iz{2ai +bz−bz^(−1) }))  =∫_(∣z∣=1)     ((2idz)/(−2az +biz^2  −bi)) =∫_(∣z∣=1)    ((2idz)/(2i^2 az +biz^2 −bi))  =∫_(∣z∣=1)     ((2dz)/(2iaz +bz^2 −b))  let W(z) =(2/(bz^2  +2iaz −b))  poles of W?  Δ^′ =−a^2 +b^2  =−(a^2 −b^2 )=(i(√(a^2 −b^2 )))^2  ⇒  z_1 =((−ia +i(√(a^2 −b^2 )))/b)  and z_2 =((−ia−i(√(a^2 −b^2 )))/b)  ∣z_1 ∣−1 =((∣−a+(√(a^2 −b^2 ))∣)/b)−1 =(((√(a^2 −b^2 ))−a)/b)−1 =(((√(a^2 −b^2 ))−a−b)/b)<0  ⇒∣z_1 ∣<1    we have  z_1 .z_2 =−1 ⇒∣z_2 ∣=(1/(∣z_1 ∣))>1  ∫_(∣z∣=1)    W(z)dz =2iπ Res(W,z_1 )  W(z) =(2/(b(z−z_1 )(z−z_2 ))) ⇒Res(W,z_1 ) =(2/(b(z_1 −z_2 ))) =(2/(b2i((√(a^2 −b^2 ))/b)))  =(1/(i(√(a^2 −b^2 )))) ⇒ ∫_(∣z∣=1)   W(z)dz =2iπ ×(1/(i(√(a^2 −b^2 )))) =((2π)/(√(a^2 −b^2 ))) =f(a)  f(a) =2π(a^2 −b^2 )^(−(1/2))  ⇒f^′ (a) =2π(−(1/2))(a^2 −b^2 )^(−(3/2))   =−π (a^2 −b^2 )^(−(3/2))  ⇒ ∫_0 ^(2π)  (dx/((a+bsinx)^2 )) =(π/((a^2 −b^2 )^(3/2) ))

letf(a)=02πdxa+bsinxwehavef(a)=02πdx(a+bsinx)202πdx(a+bsinx)2=f(a)changementeix=zgivef(a)=z∣=1dziz{a+bzz12i}=z∣=12idziz{2ai+bzbz1}=z∣=12idz2az+biz2bi=z∣=12idz2i2az+biz2bi=z∣=12dz2iaz+bz2bletW(z)=2bz2+2iazbpolesofW?Δ=a2+b2=(a2b2)=(ia2b2)2z1=ia+ia2b2bandz2=iaia2b2bz11=a+a2b2b1=a2b2ab1=a2b2abb<0⇒∣z1∣<1wehavez1.z2=1⇒∣z2∣=1z1>1z∣=1W(z)dz=2iπRes(W,z1)W(z)=2b(zz1)(zz2)Res(W,z1)=2b(z1z2)=2b2ia2b2b=1ia2b2z∣=1W(z)dz=2iπ×1ia2b2=2πa2b2=f(a)f(a)=2π(a2b2)12f(a)=2π(12)(a2b2)32=π(a2b2)3202πdx(a+bsinx)2=π(a2b2)32

Commented by mathmax by abdo last updated on 29/Aug/19

error at final lines  f(a) =2π(a^2 −b^2 )^(−(1/2))  ⇒  f^′ (a) =2π(−(1/2))(2a)(a^2 −b^2 )^(−(3/2))  =((−2πa)/((a^2 −b^2 )^(3/2) )) ⇒  ∫_0 ^(2π)   (dx/((a +bsinx)^2 )) =((2πa)/((a^2 −b^2 )^(3/2) ))

erroratfinallinesf(a)=2π(a2b2)12f(a)=2π(12)(2a)(a2b2)32=2πa(a2b2)3202πdx(a+bsinx)2=2πa(a2b2)32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com