Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 92839 by i jagooll last updated on 09/May/20

let a is complex number such   that a^(10)  + a^5  +1 = 0.  find a^(2005)  + (1/a^(2005) ) ?

letaiscomplexnumbersuchthata10+a5+1=0.finda2005+1a2005?

Answered by john santu last updated on 09/May/20

set a^5  = w ⇒ w^2 +w+1 = 0  w^2 +w+1 = ((w^3 −1)/(w−1)) = 0  ⇒a^(10) +a^5 +1 = ((a^(15) −1)/(a^5 −1)) = 0  a^(15)  = 1 ⇒ since 2005 = 133×15+10  a^(2005)  = (a^(15) )^(133)  ×a^(10)  = 1×a^(10)  = a^(10)   then a^(2005)  +(1/a^(2005) ) = a^(10) +(1/a^(10) )  = a^(10)  +((a^(15)  )/a^(10) ) = a^(10) +a^5   = −1  [ a^(10) +a^5 +1  = 0 ]

seta5=ww2+w+1=0w2+w+1=w31w1=0a10+a5+1=a151a51=0a15=1since2005=133×15+10a2005=(a15)133×a10=1×a10=a10thena2005+1a2005=a10+1a10=a10+a15a10=a10+a5=1[a10+a5+1=0]

Commented by i jagooll last updated on 09/May/20

thank you

thankyou

Commented by peter frank last updated on 09/May/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com