All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40138 by maxmathsup by imad last updated on 16/Jul/18
letak=∫−π2+kπ−π2+(k+1)πe−tcostdt1)calculateak2)findlimn→+∞∑k=0n∣ak∣.
Commented by maxmathsup by imad last updated on 20/Jul/18
1)wehaveak=t=kπ+x∫−π2π2e−(kπ+x)cos(x+kπ)dx=∫−π2π2e−kπe−x(−1)kcosxdx=(−1)ke−kπ∫−π2π2e−xcosxdxbut∫−π2π2e−xcosxdx=Re(∫−π2π2e−xeix)=Re(∫−π2π2e(−1+i)xdx)=Re([1−1+ie(−1+i)x]−π2π2=Re(1−1+i(e(−1+i)π2−e−(−1+i)π2))=Re{−11−i(e−π2i+eπ2i}=Re{−i1−i(eπ2+e−π2)}=Re(−i(1+i)2(eπ2+e−π2))=Re(−i+12(eπ2+e−π2))=eπ2+e−π22=ch(π2)⇒ak=(−1)ke−kπch(π2).
2)letSn=∑k=0n∣ak∣Sn=∑k=0nch(π2)(e−π)k=ch(π2)∑k=0n(e−π)k=ch(π2)1−e−(n+1)π1−e−π⇒limn→+∞Sn=ch(π2)1−e−π.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com