Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40138 by maxmathsup by imad last updated on 16/Jul/18

let  a_k    =∫_(−(π/(2 )) +kπ) ^(−(π/2) +(k+1)π)  e^(−t)  cost dt  1) calculate a_k   2) find lim_(n→+∞)   Σ_(k=0) ^n   ∣a_k ∣.

letak=π2+kππ2+(k+1)πetcostdt1)calculateak2)findlimn+k=0nak.

Commented by maxmathsup by imad last updated on 20/Jul/18

1) we have a_k =_(t=kπ +x)     ∫_(−(π/2)) ^(π/2)   e^(−(kπ+x))  cos(x+kπ)dx  = ∫_(−(π/2)) ^(π/2)   e^(−kπ)  e^(−x)  (−1)^k cosx dx  =(−1)^k  e^(−kπ)   ∫_(−(π/2)) ^(π/2)  e^(−x)  cosxdx but ∫_(−(π/2)) ^(π/2)  e^(−x) cosx dx=Re( ∫_(−(π/2)) ^(π/2)  e^(−x)  e^(ix) )  =Re( ∫_(−(π/2)) ^(π/2)  e^((−1+i)x) dx) =Re( [(1/(−1+i)) e^((−1+i)x) ]_(−(π/2)) ^(π/2)   =Re( (1/(−1+i))( e^((−1+i)(π/2))  −e^(−(−1+i)(π/2)) ))  =Re{  ((−1)/(1−i))( e^(−(π/2)) i + e^(π/2) i}=Re { ((−i)/(1−i))( e^(π/2)  +e^(−(π/2)) )}  =Re(  ((−i(1+i))/2)( e^(π/2)  +e^(−(π/2)) ))= Re(  ((−i+1)/2)(e^(π/2)  +e^(−(π/2)) ))  =((e^(π/2)  +e^(−(π/2)) )/2) =ch((π/2)) ⇒  a_k =(−1)^k  e^(−kπ)  ch((π/2)) .

1)wehaveak=t=kπ+xπ2π2e(kπ+x)cos(x+kπ)dx=π2π2ekπex(1)kcosxdx=(1)kekππ2π2excosxdxbutπ2π2excosxdx=Re(π2π2exeix)=Re(π2π2e(1+i)xdx)=Re([11+ie(1+i)x]π2π2=Re(11+i(e(1+i)π2e(1+i)π2))=Re{11i(eπ2i+eπ2i}=Re{i1i(eπ2+eπ2)}=Re(i(1+i)2(eπ2+eπ2))=Re(i+12(eπ2+eπ2))=eπ2+eπ22=ch(π2)ak=(1)kekπch(π2).

Commented by maxmathsup by imad last updated on 20/Jul/18

2) let S_n = Σ_(k=0) ^n   ∣a_k ∣  S_n = Σ_(k=0) ^n   ch((π/2)) (e^(−π) )^k =ch((π/2))Σ_(k=0) ^n  (e^(−π) )^k   =ch((π/2)) ((1−e^(−(n+1)π) )/(1−e^(−π) )) ⇒ lim_(n→+∞)   S_n = ((ch((π/2)))/(1−e^(−π) )) .

2)letSn=k=0nakSn=k=0nch(π2)(eπ)k=ch(π2)k=0n(eπ)k=ch(π2)1e(n+1)π1eπlimn+Sn=ch(π2)1eπ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com