Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 146902 by mathmax by abdo last updated on 16/Jul/21

let α and β roots of  z^2 +3z+5=0  simlify U_n = Σ_(k=0) ^n  (α^k  +β^k )  and V_n =Σ_(k=0) ^n  ((1/α^k )+(1/β^k ))

letαandβrootsofz2+3z+5=0simlifyUn=k=0n(αk+βk)andVn=k=0n(1αk+1βk)

Answered by ArielVyny last updated on 18/Jul/21

z^2 +3z+5=0→(z+(3/2))^2 −(9/4)+((20)/4)=0                                      (z+(3/2))^2 +((11)/4)=0                                       (z+(3/2)−i((√(11))/2))(z+(3/2)+i((√(11))/2))=0  then α=−(3/2)+i((√(11))/2)  and β=−(3/2)−i((√(11))/2)  U_n =Σ_(k=0) ^n (α^k +β^k )  ∣α∣=∣−(3/2)+i((√(11))/2)∣=(√((−(3/2))^2 +(((√(11))/2))^2 ))  ∣α∣=(√((9/4)+((11)/4)))=((√(20))/2)  α=((√(20))/2)(−((3/2)/((√(20))/2))+i(((√(11))/2)/((√(20))/2)))=((√(20))/2)(−(3/( (√(20))))+i((√(11))/( (√(20)))))  α=((√(20))/2)e^(iθ)  tel que  { ((cosθ=−(3/( (√(20)))))),((sinθ=(√((11)/(20))))) :}  β=((√(20))/2)e^(−iθ)    U_n =Σ_(k=0) ^n [(((√(20))/2))^k e^(ikθ) +(((√(20))/2))^k e^(−ikθ) ]  U_n =((1−(((√(20))/2)e^(iθ) )^(n+1) )/(1−(((√(20))/2)e^(iθ) )))+((1−(((√(20))/2)e^(−iθ) )^(n+1) )/(1−(((√(20))/2)e^(−iθ) )))  U_n =((1−((√(20))/2)e^(−iθ) −(((√(20))/2)e^(iθ) )^(n+1) +(((√(20))/2))^(n+2) e^(iθn) )/(1−(((√(20))/2)e^(−iθ) )−(((√(20))/2)e^(iθ) )+((20)/4)))  to be continued....

z2+3z+5=0(z+32)294+204=0(z+32)2+114=0(z+32i112)(z+32+i112)=0thenα=32+i112andβ=32i112Un=k=0n(αk+βk)α∣=∣32+i112∣=(32)2+(112)2α∣=94+114=202α=202(32202+i112202)=202(320+i1120)α=202eiθtelque{cosθ=320sinθ=1120β=202eiθUn=k=0n[(202)keikθ+(202)keikθ]Un=1(202eiθ)n+11(202eiθ)+1(202eiθ)n+11(202eiθ)Un=1202eiθ(202eiθ)n+1+(202)n+2eiθn1(202eiθ)(202eiθ)+204tobecontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com