Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32363 by prof Abdo imad last updated on 23/Mar/18

let consider the function  f(x,θ) =  ∫_x ^x^2  ln( 2+sinθ cost)dt  calculate (∂f/∂x)(x,θ) and  (∂f/∂θ)(x,θ) .

letconsiderthefunctionf(x,θ)=xx2ln(2+sinθcost)dtcalculatefx(x,θ)andfθ(x,θ).

Commented by prof Abdo imad last updated on 25/Mar/18

(∂f/∂x)(x,θ) = 2x ln(2 +sinθ cos(x^2 ))−ln(2+sinθ cosx)  (∂f/∂θ)(x,θ) = ∫_x ^x^2    ((cost cosθ)/(2+costsinθ)) dt  ch. tan((t/2))=ugive  (∂f/∂θ) = ∫_(tan((x/2))) ^(tan((x^2 /2)))    ((cosθ((1−u^2 )/(1+u^2 )))/(2+sinθ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = ∫_(tan((x/2))) ^(tan((x^2 /2)))      (((1−u^2 )cosθ)/((1+u^2 )(2 +(1−u^2 )sinθ)))du  = ∫_(tan((x/2))) ^(tan((x^2 /2)))    ((α −αu^2 )/((1+u^2 )(2+β −βu^2 ))) du whit α=cosθ  and β=sinθ  =∫_(tan((x/2))) ^(tan((x^2 /2))  )      ((−αu^2  +α)/((1+u^2 )(−βu^2 +β+2)))du let decompose  f(u) =  ((αu^2  −α)/((1+u^2 )(βu^2 −β−2)))  =  ((αu^2  −α)/(β(1+u^2 )( u^2  −((√((β+2)/β)))^2 )))  =  (a/((u−(√((β+2)/β)))))  +(b/(u+(√((β+2)/β))))  + ((cu +d)/(u^2  +1)) ...be  conyinued....

fx(x,θ)=2xln(2+sinθcos(x2))ln(2+sinθcosx)fθ(x,θ)=xx2costcosθ2+costsinθdtch.tan(t2)=ugivefθ=tan(x2)tan(x22)cosθ1u21+u22+sinθ1u21+u22du1+u2=tan(x2)tan(x22)(1u2)cosθ(1+u2)(2+(1u2)sinθ)du=tan(x2)tan(x22)ααu2(1+u2)(2+ββu2)duwhitα=cosθandβ=sinθ=tan(x2)tan(x22)αu2+α(1+u2)(βu2+β+2)duletdecomposef(u)=αu2α(1+u2)(βu2β2)=αu2αβ(1+u2)(u2(β+2β)2)=a(uβ+2β)+bu+β+2β+cu+du2+1...beconyinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com