Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62856 by mathmax by abdo last updated on 26/Jun/19

let f(λ) =∫_0 ^(+∞)    (x^4 /(x^6  +λ^6 )) dx   with λ>0  1) calculate  f(λ)  2) calculate also g(λ) =∫_0 ^∞   (x^4 /((x^6  +λ^6 )^2 ))dx  3) find the values of ∫_0 ^∞    (x^4 /(x^6  +1)) dx , ∫_0 ^∞    (x^4 /(x^6  +8))dx and ∫_0 ^∞    (x^4 /((x^6 +8)^2 ))dx.

letf(λ)=0+x4x6+λ6dxwithλ>01)calculatef(λ)2)calculatealsog(λ)=0x4(x6+λ6)2dx3)findthevaluesof0x4x6+1dx,0x4x6+8dxand0x4(x6+8)2dx.

Commented by mathmax by abdo last updated on 26/Jun/19

1) we use the result  ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa))) if  0<a<1  (result proved)  changementx =λ t give f(λ)= ∫_0 ^∞     (((λt)^4 )/((λt)^6  +λ^6 ))λdt =(λ^5 /λ^6 )∫_0 ^∞   (t^4 /(1+t^6 )) dt  =(1/λ) ∫_0 ^∞   ((t^4  dt)/(1+t^6 ))  =_(t =u^(1/6) )    (1/λ) ∫_0 ^∞   (((u^(1/6) )^4 )/(1+u)) (1/6) u^((1/6)−1)  du  =(1/(6λ)) ∫_0 ^∞    (u^((2/3)+(1/6)−1) /(1+u)) du =(1/(6λ)) ∫_0 ^∞   (u^((5/6)−1) /(1+u)) du =(1/(6λ)) (π/(sin(((5π)/6)))) =(π/(6λ sin(π−(π/6))))  =(π/(6λsin((π/6)))) =(π/(6λ (1/2))) =(π/(3λ)) ⇒ ★ f(λ)=(π/(3λ)) ★  2) let derivate f(λ)  we have f^′ (λ) =−∫_0 ^∞  ((6λ^5  x^4 )/((x^6  +λ^6 )^2 )) dx  =−6λ^5  ∫_0 ^∞  (x^4 /((x^6  +λ^6 )^2 ))dx =−6 λ^5  g(λ) ⇒g(λ) =−(1/(6λ^5 )) f^′ (λ)  we have f^′ (λ) =−(π/3)(1/λ^2 ) ⇒g(λ) =−(1/(6λ^5 )) (−(π/(3λ^2 ))) =(π/(18 λ^7 )) ⇒  ★ g(λ) =(π/(18λ^7 )) ★

1)weusetheresult0ta11+tdt=πsin(πa)if0<a<1(resultproved)changementx=λtgivef(λ)=0(λt)4(λt)6+λ6λdt=λ5λ60t41+t6dt=1λ0t4dt1+t6=t=u161λ0(u16)41+u16u161du=16λ0u23+1611+udu=16λ0u5611+udu=16λπsin(5π6)=π6λsin(ππ6)=π6λsin(π6)=π6λ12=π3λf(λ)=π3λ2)letderivatef(λ)wehavef(λ)=06λ5x4(x6+λ6)2dx=6λ50x4(x6+λ6)2dx=6λ5g(λ)g(λ)=16λ5f(λ)wehavef(λ)=π31λ2g(λ)=16λ5(π3λ2)=π18λ7g(λ)=π18λ7

Commented by mathmax by abdo last updated on 26/Jun/19

3) ∫_0 ^∞   (x^4 /(1+x^6 )) dx =f(1) =(π/3)  let calculate   ∫_0 ^∞    (x^4 /(x^6  +8)) dx  here  λ^6  =8 ⇒ λ =8^(1/6)  =(2^3 )^(1/6)  =2^(1/2)  =2 ⇒  ∫_0 ^∞   (x^4 /(x^6  +8))dx =f((√2)) =(π/(3(√2)))  ∫_0 ^∞    (x^4 /((x^6  +8)^2 )) dx =g((√2)) =(π/(18((√2))^7 )) =(π/(18 .2^(7/2) )) =(π/(18.3.(√2))) =(π/(54(√2))) .

3)0x41+x6dx=f(1)=π3letcalculate0x4x6+8dxhereλ6=8λ=816=(23)16=212=20x4x6+8dx=f(2)=π320x4(x6+8)2dx=g(2)=π18(2)7=π18.272=π18.3.2=π542.

Commented by mathmax by abdo last updated on 26/Jun/19

error of typo  2^(1/2)  =(√2)

erroroftypo212=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com