Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36755 by prof Abdo imad last updated on 05/Jun/18

let f(a) = ∫_0 ^1   e^t ln(1+ e^(−at) )dt  with a≥0  1) find f(a)  2) calculate f^′ (a)  3) find the value of  ∫_0 ^1  e^t ln(1+e^(−3t) )dt .

letf(a)=01etln(1+eat)dtwitha01)findf(a)2)calculatef(a)3)findthevalueof01etln(1+e3t)dt.

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18

Commented by abdo.msup.com last updated on 05/Jun/18

for ∣x∣<1 ln^′ (1+x) =(1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n   and ln(1+x)=Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)   =Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n  ⇒  f(a)= ∫_0 ^1  e^t  {Σ_(n=1) ^∞  (((−1)^(n−1) )/n)  e^(−nat) }dt  = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ∫_0 ^1    e^((1−na)t) dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(1/(1−na)){ e^(1−na)  −1}  =Σ_(n=1) ^∞   (((−1)^(n−1)  e^(1−na) )/(n(1−na)))  −Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(1−na)))  let w(a) =Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(1−na)))  ((w(a))/a) =Σ_(n=1) ^∞    (((−1)^n )/(na(na−1)))  =Σ_(n=1) ^∞   (−1)^n ( (1/(na−1)) −(1/(na)))  =Σ_(n=1) ^∞   (((−1))/(na−1)) −(1/a) Σ_(n=1) ^∞  (((−1)^n )/n)  Σ_(n=1) ^∞    (((−1)^n )/(na−1))  +((ln(2))/a) =....be continued...

forx∣<1ln(1+x)=11+x=n=0(1)nxnandln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1nxnf(a)=01et{n=1(1)n1nenat}dt=n=1(1)n1n01e(1na)tdt=n=1(1)n1n11na{e1na1}=n=1(1)n1e1nan(1na)n=1(1)n1n(1na)letw(a)=n=1(1)n1n(1na)w(a)a=n=1(1)nna(na1)=n=1(1)n(1na11na)=n=1(1)na11an=1(1)nnn=1(1)nna1+ln(2)a=....becontinued...

Commented by abdo.msup.com last updated on 05/Jun/18

2) we have f^′ (a) = ∫_0 ^1  ((−te^(−at)  e^t )/(1+e^(−at) ))dt  =−∫_0 ^1    (( t e^((1−a)t) )/(1+e^(−at) )) dt   =−∫_0 ^1   t e^((1−a)t)  {Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(−nat) }dt  =Σ_(n=1) ^∞   (((−1)^n )/n) ∫_0 ^1  t e^((1−a−na)t) dt =....

2)wehavef(a)=01teatet1+eatdt=01te(1a)t1+eatdt=01te(1a)t{n=1(1)n1nenat}dt=n=1(1)nn01te(1ana)tdt=....

Commented by abdo.msup.com last updated on 05/Jun/18

3) ∫_0 ^1  e^t  ln(1+e^(−3t) )dt  = ∫_0 ^1  e^t  { Σ_(n=1) ^∞ (((−1)^(n−1) )/n)  e^(−3nt) )}dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1   e^((1−3n)t) dt  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) (1/(1−3n))[ e^((1−3n)t) ]_0 ^1   =Σ_(n=1) ^∞   (((−1)^(n−1)  e^(1−3n) )/(n(1−3n)))  −Σ_(n=1) ^∞    (((−1)^(n−1) )/(n(1−3n))) let  A_n = Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(1−3n)))  (A_n /3) = Σ_(n=1) ^∞    (((−1)^n )/(3n(3n−1)))  =Σ_(n=1) ^∞  (−1)^n {(1/(3n−1)) −(1/(3n))}  =Σ_(n=1) ^(∞ )   (((−1)^n )/(3n−1)) −(1/3) Σ_(n=1) ^∞  (((−1)^n )/n)  =((ln(2))/3) +Σ_(n=1) ^∞   (((−1)^n )/(3n−1))  let f(x)=Σ_(n=1) ^∞   (−1)^n  (x^(3n−1) /(3n−1))  f^′ (x) = Σ_(n=1) ^∞  (−1)^n  x^(3n−2)   = (1/x^2 ) Σ_(n=1) ^∞  (−x^3 )^n = (1/x^2 ) (1/(1+x^3 )) ⇒  f(x)= ∫     (dx/(x^2 (1+x^3 ))) +c ....be continued...

3)01etln(1+e3t)dt=01et{n=1(1)n1ne3nt)}dt=n=1(1)n1n01e(13n)tdt=n=1(1)n1n113n[e(13n)t]01=n=1(1)n1e13nn(13n)n=1(1)n1n(13n)letAn=n=1(1)n1n(13n)An3=n=1(1)n3n(3n1)=n=1(1)n{13n113n}=n=1(1)n3n113n=1(1)nn=ln(2)3+n=1(1)n3n1letf(x)=n=1(1)nx3n13n1f(x)=n=1(1)nx3n2=1x2n=1(x3)n=1x211+x3f(x)=dxx2(1+x3)+c....becontinued...

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18

2)f(α)=∫_0 ^1 e^t {ln(1+e^(αt) )−lne^(αt) )}dt  =∫_0 ^1 e^t {ln(1+e^(αt) )−αt}dt  f′(α)=∫_0 ^1 (∂/∂α) e^t {ln(1+e^(αt) )−αt}dt  =∫_0 ^1 e^t {((e^(αt) ×t)/(1+e^(αt) ))−t}dt  =∫_0 ^1 e^t {((te^(αt) −t−te^(αt) )/(1+e^(αt) ))}dt  =∫_0 ^1 ((−te^t )/(1+e^(αt) ))dt...contd

2)f(α)=01et{ln(1+eαt)lneαt)}dt=01et{ln(1+eαt)αt}dtf(α)=01αet{ln(1+eαt)αt}dt=01et{eαt×t1+eαtt}dt=01et{teαttteαt1+eαt}dt=01tet1+eαtdt...contd

Terms of Service

Privacy Policy

Contact: info@tinkutara.com