Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78269 by msup trace by abdo last updated on 15/Jan/20

let f(a) =∫_0 ^∞  ((cos(ax))/(x^2 +a^2 ))dx with  a>0  find   ∫_1 ^2 f(a)da

letf(a)=0cos(ax)x2+a2dxwitha>0find12f(a)da

Commented by mathmax by abdo last updated on 15/Jan/20

we have 2f(a) =∫_(−∞) ^(+∞)  ((cos(ax))/(x^2  +a^2 ))dx =Re(∫_(−∞) ^(+∞)  (e^(iax) /(x^2  +a^2 ))dx)  let W(z)=(e^(iaz) /(z^2  +a^2 )) ⇒W(z)=(e^(iaz) /((z−ia)(z+ia)))  so the poles of W are  ia and −ia  ⇒∫_(−∞) ^(+∞) W(z)dz =2iπ Res(W,ia)  =2iπ×(e^(ia(ia)) /(2ia)) =(π/a) e^(−a^2 ) =2f(a) ⇒f(a) =(π/(2a))e^(−a^2  ) ⇒  ∫_1 ^2 f(a)da =(π/2)∫_1 ^2  (e^(−a^2 ) /a)da  and a form of serie  e^(−a^2 )  =Σ_(n=0) ^∞   (((−a^2 )^n )/(n!)) =Σ_(n=0) ^∞ (((−1)^n  a^(2n) )/(n!)) ⇒  (e^(−a^2 ) /a) =Σ_(n=0) ^∞  (((−1)^n )/(n!)) a^(2n−1)  ⇒∫_1 ^2 (e^(−a^2 ) /a)da  =Σ_(n=0) ^∞  (((−1)^n )/(n!))[(1/(2n))a^(2n) ]_1 ^2  =Σ_(n=0) ^∞ (((−1)^n )/((2n)n!))( 2^(2n) −1) ⇒  ∫_1 ^2 f(a)da =(π/2)Σ_(n=0) ^∞  (((−1)^n )/((2n)n!))(4^n −1)

wehave2f(a)=+cos(ax)x2+a2dx=Re(+eiaxx2+a2dx)letW(z)=eiazz2+a2W(z)=eiaz(zia)(z+ia)sothepolesofWareiaandia+W(z)dz=2iπRes(W,ia)=2iπ×eia(ia)2ia=πaea2=2f(a)f(a)=π2aea212f(a)da=π212ea2adaandaformofserieea2=n=0(a2)nn!=n=0(1)na2nn!ea2a=n=0(1)nn!a2n112ea2ada=n=0(1)nn![12na2n]12=n=0(1)n(2n)n!(22n1)12f(a)da=π2n=0(1)n(2n)n!(4n1)

Answered by mind is power last updated on 15/Jan/20

f(a)=∫_0 ^(+∞) ((cos(ax))/(x^2 +a^2 ))dx  =Re(1/2)∫_(−∞) ^(+∞) (e^(iax) /(x^2 +a^2 ))  =Re{iπRes((e^(iax) /(x^2 +a^2 )),x=ia)}  =iπ.(e^(−a^2 ) /(2ia))=(π/(2ae^(−a) ))  ∫_1 ^2 ((πe^a )/(2a))=(π/2)∫(e^a /a)da  use E(x)

f(a)=0+cos(ax)x2+a2dx=Re12+eiaxx2+a2=Re{iπRes(eiaxx2+a2,x=ia)}=iπ.ea22ia=π2aea12πea2a=π2eaadauseE(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com