All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 78269 by msup trace by abdo last updated on 15/Jan/20
letf(a)=∫0∞cos(ax)x2+a2dxwitha>0find∫12f(a)da
Commented by mathmax by abdo last updated on 15/Jan/20
wehave2f(a)=∫−∞+∞cos(ax)x2+a2dx=Re(∫−∞+∞eiaxx2+a2dx)letW(z)=eiazz2+a2⇒W(z)=eiaz(z−ia)(z+ia)sothepolesofWareiaand−ia⇒∫−∞+∞W(z)dz=2iπRes(W,ia)=2iπ×eia(ia)2ia=πae−a2=2f(a)⇒f(a)=π2ae−a2⇒∫12f(a)da=π2∫12e−a2adaandaformofseriee−a2=∑n=0∞(−a2)nn!=∑n=0∞(−1)na2nn!⇒e−a2a=∑n=0∞(−1)nn!a2n−1⇒∫12e−a2ada=∑n=0∞(−1)nn![12na2n]12=∑n=0∞(−1)n(2n)n!(22n−1)⇒∫12f(a)da=π2∑n=0∞(−1)n(2n)n!(4n−1)
Answered by mind is power last updated on 15/Jan/20
f(a)=∫0+∞cos(ax)x2+a2dx=Re12∫−∞+∞eiaxx2+a2=Re{iπRes(eiaxx2+a2,x=ia)}=iπ.e−a22ia=π2ae−a∫12πea2a=π2∫eaadauseE(x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com