Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64970 by mathmax by abdo last updated on 23/Jul/19

let f(a)=∫_0 ^∞   ((cos(x^2 ) +sin(x^2 ))/((x^2  +a^2 )^2 )) dx   with a>0  1) calculate f(a)  2) find the values of ∫_0 ^∞   ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx and  ∫_0 ^∞  ((cos(x^2 )+sin(x^2 ))/((x^2 +3)^2 ))dx

letf(a)=0cos(x2)+sin(x2)(x2+a2)2dxwitha>01)calculatef(a)2)findthevaluesof0cos(x2)+sin(x2)(x2+1)2dxand0cos(x2)+sin(x2)(x2+3)2dx

Commented by ~ À ® @ 237 ~ last updated on 23/Jul/19

      we  always have  cos(x^2 )+sin(x^2 )=1  so  f(a)=∫_0 ^∞ (1/((x^2 +a^2 )^2 ))dx  let change  x =a.tant        dx =a (1+tan^2 t)dt     f(a) = ∫_0 ^(π/2) ((a(1+tan^2 t)dt)/((a^2 tan^2 t +a^2 )^2 ))              =(1/a^3 ) ∫_0 ^(π/2) (1/((1+tan^2 t)))dt         =(1/a^3 ) ∫_(0   ) ^(π/2) cos^2 t  dt   knowing that  cos^2 t  =  ((1+cos2t)/2)   we  finally  got      f(a)= (1/a^3 ) [(t/2) +(1/4)sin2t]_0 ^(π/2)           =  (π/(4a^3 ))  then   f(1) = (π/4)      and  f((√3)) = (π/(12(√3)))

wealwayshavecos(x2)+sin(x2)=1sof(a)=01(x2+a2)2dxletchangex=a.tantdx=a(1+tan2t)dtf(a)=0π2a(1+tan2t)dt(a2tan2t+a2)2=1a30π21(1+tan2t)dt=1a30π2cos2tdtknowingthatcos2t=1+cos2t2wefinallygotf(a)=1a3[t2+14sin2t]0π2=π4a3thenf(1)=π4andf(3)=π123

Commented by mathmax by abdo last updated on 23/Jul/19

thank you sir.

thankyousir.

Commented by mathmax by abdo last updated on 23/Jul/19

really its cos(x^2 )−sin(x^2 )not + but nevermind i will post  another question...

reallyitscos(x2)sin(x2)not+butnevermindiwillpostanotherquestion...

Commented by MJS last updated on 24/Jul/19

(cos x)^2 +(sin x)^2 =1  but  cos (x^2 ) +sin (x^2 ) =(√2)sin (x^2 +(π/4))  which is not always =1

(cosx)2+(sinx)2=1butcos(x2)+sin(x2)=2sin(x2+π4)whichisnotalways=1

Commented by mathmax by abdo last updated on 24/Jul/19

sir ∼ 237   you answer is not correct  ....

sir237youanswerisnotcorrect....

Commented by mathmax by abdo last updated on 24/Jul/19

you are right sir  i have commited a error i delet this post   and give the right answer ...

youarerightsirihavecommitedaerrorideletthispostandgivetherightanswer...

Commented by mathmax by abdo last updated on 24/Jul/19

1)we have cos(x^2 )+sin(x^2 ) =(√2)cos(x^2 −(π/4)) ⇒  f(a) =(√2)∫_0 ^∞    ((cos(x^2 −(π/4)))/((x^2  +a^2 )^2 ))dx ⇒2f(a) =(√2)∫_(−∞) ^(+∞)  ((cos(x^2 −(π/4)))/((x^2  +a^2 )^2 ))dx  ⇒(√2)f(a) =Re(∫_(−∞) ^(+∞)   (e^(i(x^2 −(π/4))) /((x^2  +a^2 )^2 ))ex) let ϕ(z) =(e^(i(z^2 −(π/4))) /((z^2  +a^2 )^2 )) ⇒  ϕ(z) =(e^(i(z^2 −(π/4))) /((z−ia)^2 (z+ia)^2 ))  the poles of ϕ are +^− ia  (a>0) residus  theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ia)  Res(ϕ,ia) =lim_(z→ia) (z−ia)^2 {(z−ia)^2 ϕ(z)}^((1))   =lim_(z→ia)   {(e^(i(z^2 −(π/4))) /((z+ia)^2 ))}^((1))  =e^(−((iπ)/4))  lim_(z→ia)    {(e^(iz^2 ) /((z+ia)^2 ))}^((1))   =e^(−((iπ)/4))    lim_(z→ia)    ((2iz e^(iz^2 ) (z+ia)^2  −2(z+ia)e^(iz^2 ) )/((z+ia)^4 ))  =e^(−((iπ)/4))  lim_(z→ia)     (((2iz(z+ia)−2)e^(iz^2 ) )/((z+ia)^3 ))  =e^(−i(π/4))   ((2i(ia)(2ia)−2)/((2ia)^3 )) e^(i(ia)^2 ) = e^(−((iπ)/4))   ((−4ia^2 −2)/(−8ia^3 )) e^(−ia^2 )   =((2ia^2 −1)/(4ia^3 )) e^(−i((π/4)+a^2 ))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((2ia^2 −1)/(4ia^3 )) e^(−i((π/4)+a^2 ))   =−(π/(2a^3 ))(1−2ia^2 )( cos((π/4)+a^2 )−isin((π/4)+a^2 ))  =−(π/(2a^3 )){cos((π/4)+a^2 )−isin((π/4)+a^2 )−2ia^2 cos((π/4)+a^2 )−2a^2 sin((π/4)+a^2 )}  (√2)f(a) =−(π/(2a^3 ))(cos((π/4)+a^2 )−2a^2 sin((π/4) +a^2 ))  =−(π/(2a^3 ))cos((π/4)+a^2 ) +(π/a) sin((π/4) +a^2 ) ⇒  f(a) =(π/(a(√2)))sin((π/4) +a^2 )−(π/(2(√2)a^3 )) cos((π/4) +a^2 )

1)wehavecos(x2)+sin(x2)=2cos(x2π4)f(a)=20cos(x2π4)(x2+a2)2dx2f(a)=2+cos(x2π4)(x2+a2)2dx2f(a)=Re(+ei(x2π4)(x2+a2)2ex)letφ(z)=ei(z2π4)(z2+a2)2φ(z)=ei(z2π4)(zia)2(z+ia)2thepolesofφare+ia(a>0)residustheoremgive+φ(z)dz=2iπRes(φ,ia)Res(φ,ia)=limzia(zia)2{(zia)2φ(z)}(1)=limzia{ei(z2π4)(z+ia)2}(1)=eiπ4limzia{eiz2(z+ia)2}(1)=eiπ4limzia2izeiz2(z+ia)22(z+ia)eiz2(z+ia)4=eiπ4limzia(2iz(z+ia)2)eiz2(z+ia)3=eiπ42i(ia)(2ia)2(2ia)3ei(ia)2=eiπ44ia228ia3eia2=2ia214ia3ei(π4+a2)+φ(z)dz=2iπ2ia214ia3ei(π4+a2)=π2a3(12ia2)(cos(π4+a2)isin(π4+a2))=π2a3{cos(π4+a2)isin(π4+a2)2ia2cos(π4+a2)2a2sin(π4+a2)}2f(a)=π2a3(cos(π4+a2)2a2sin(π4+a2))=π2a3cos(π4+a2)+πasin(π4+a2)f(a)=πa2sin(π4+a2)π22a3cos(π4+a2)

Commented by mathmax by abdo last updated on 24/Jul/19

2) ∫_0 ^∞    ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx =f(1) =(π/(√2))sin((π/4)+1)−(π/(2(√2)))cos((π/4)+1)  ∫_0 ^∞   ((cos(x^2 )+sin(x^2 ))/((x^2  +3)^2 )) =f((√3)) =(π/(√6))sin((π/4)+3)−(π/(2(√2)3(√3))) cos((π/4)+3)  =(π/(√6))sin(3+(π/4))−(π/(6(√6))) cos(3+(π/4)).

2)0cos(x2)+sin(x2)(x2+1)2dx=f(1)=π2sin(π4+1)π22cos(π4+1)0cos(x2)+sin(x2)(x2+3)2=f(3)=π6sin(π4+3)π2233cos(π4+3)=π6sin(3+π4)π66cos(3+π4).

Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19

   yes  you are right . I did not mind the difference at this time  . Sorry

yesyouareright.Ididnotmindthedifferenceatthistime.Sorry

Terms of Service

Privacy Policy

Contact: info@tinkutara.com