Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67674 by Abdo msup. last updated on 30/Aug/19

let f(a) =∫_0 ^∞      (dx/((x^2 +1)(x^2 +a)))  with a>0  1) determine a explicit form of f(a)  2) calculate g(a) =∫_0 ^∞   (dx/((x^2  +1)(x^2  +a)^2 ))  3)give f^((n)) (a) at form of integral  4)calculate ∫_0 ^∞   (dx/((x^2  +1)(x^2  +3)^2 )) and  ∫_0 ^∞    (dx/((x^2  +1)^3 ))

letf(a)=0dx(x2+1)(x2+a)witha>01)determineaexplicitformoff(a)2)calculateg(a)=0dx(x2+1)(x2+a)23)givef(n)(a)atformofintegral4)calculate0dx(x2+1)(x2+3)2and0dx(x2+1)3

Commented by mathmax by abdo last updated on 30/Aug/19

1)f(a) =∫_0 ^∞   (dx/((x^2 +1)(x^2  +a))) ⇒2f(a) =∫_(−∞) ^(+∞)  (dx/((x^2  +1)(x^2  +a)))  let W(z) =(1/((z^2  +1)(z^2  +a))) ⇒W(z) =(1/((z−i)(z+i)(z−i(√a))(z+i(√a))))  residus theorem give   ∫_(−∞) ^(+∞)  W(z)dz =2iπ{ Res(W,i) +Res(W,i(√a))}  Res(W,i) =lim_(z→i) (z−i)W(z) =(1/(2i(a−1)))   ( a≠1)  Res(W,i(√a)) =lim_(z→i(√a))    (z−i(√a))W(z) =(1/(2i(√a)(1−a))) ⇒  ∫_(−∞) ^(+∞)   W(z)dz =2iπ{(1/(2i(a−1))) +(1/(2i(√a)(1−a)))}  =(π/(a−1)) +(π/((√a)(1−a))) =(π/(a−1))−(π/((a−1)(√a))) =(π/(a−1))(1−(1/(√a)))  =((π((√a)−1))/((√a)(a−1))) =(π/((√a)((√a)+1))) ⇒ f(a) =(π/(2(√a)((√a)+1))) =(π/(2(a+(√a))))  another way  f(a) =(1/(a−1))∫_0 ^∞ {(1/(x^2 +1))−(1/(x^2 +a))}dx  =(1/(a−1))×(π/2)−(1/(a−1)) ∫_0 ^∞    (dx/(x^2  +a))  changement x =(√a)t give  ∫_0 ^∞   (dx/(x^2  +a)) =∫_0 ^∞    (((√a)dt)/(a(t^2  +1))) =(1/(√a))×(π/2) ⇒f(a)=(π/(2(a−1)))−(π/(2(√a)(a−1)))

1)f(a)=0dx(x2+1)(x2+a)2f(a)=+dx(x2+1)(x2+a)letW(z)=1(z2+1)(z2+a)W(z)=1(zi)(z+i)(zia)(z+ia)residustheoremgive+W(z)dz=2iπ{Res(W,i)+Res(W,ia)}Res(W,i)=limzi(zi)W(z)=12i(a1)(a1)Res(W,ia)=limzia(zia)W(z)=12ia(1a)+W(z)dz=2iπ{12i(a1)+12ia(1a)}=πa1+πa(1a)=πa1π(a1)a=πa1(11a)=π(a1)a(a1)=πa(a+1)f(a)=π2a(a+1)=π2(a+a)anotherwayf(a)=1a10{1x2+11x2+a}dx=1a1×π21a10dxx2+achangementx=atgive0dxx2+a=0adta(t2+1)=1a×π2f(a)=π2(a1)π2a(a1)

Commented by mathmax by abdo last updated on 30/Aug/19

2)  we have f^′ (a) =−∫_0 ^∞    (dx/((x^2  +1)(x^2  +a)^2 )) =−g(a) ⇒  g(a) =−f^′ (a)  but f(a) =(π/(2(a+(√a)))) ⇒f^′ (a) =−(π/2)×(((a+(√a))^′ )/((a+(√a))^2 ))  =−(π/2)×((1+(1/(2(√a))))/((a+(√a))^2 )) =−(π/2) ((2(√a)+1)/(2(√a)(a+(√a))^2 )) =−(π/4)×((2(√a)+1)/((√a)(a+(√a))^2 )) ⇒  g(a) =((π(2(√a) +1))/(4(√a)(a+(√a))^2 ))

2)wehavef(a)=0dx(x2+1)(x2+a)2=g(a)g(a)=f(a)butf(a)=π2(a+a)f(a)=π2×(a+a)(a+a)2=π2×1+12a(a+a)2=π22a+12a(a+a)2=π4×2a+1a(a+a)2g(a)=π(2a+1)4a(a+a)2

Commented by mathmax by abdo last updated on 30/Aug/19

4)∫_0 ^∞      (dx/((x^2 +1)(x^2  +3)^2 )) =g(3) =((π(2(√3)+1))/(4(√3)(3+(√3))^2 ))  let find I =∫_0 ^∞     (dx/((x^2  +1)^3 )) ⇒ 2I =∫_(−∞) ^(+∞)  (dx/((x^2  +1)^3 )) let w(z)=(1/((z^2  +1)^3 ))  ⇒w(z) =(1/((z−i)^3 (z+i)^3 )) the poles of w are i and −i(triples)  residus theorem give ∫_(−∞) ^(+∞) w(z)dz =2iπ Res(w,i)  Res(w,i) =lim_(z→i)  (1/((3−1)!)){(z−i)^3 w(z)}^((2))   =lim_(z→i)  (1/2){(z+i)^(−3) }^((2))  =lim_(z→i)   (1/2){−3(z+i)^(−4) }^((1))   =lim_(z→i)    ((−3)/2){−4(z+i)^(−5) } =6 (2i)^(−5)  =(6/(2^5 i^5 )) =(6/(32i)) =((3.2)/(16.2i)) =(3/(16i))  ⇒ ∫_(−∞) ^(+∞)  w(z)dz =2iπ×(3/(16i)) =((3π)/8) =2I ⇒ I =((3π)/(16))

4)0dx(x2+1)(x2+3)2=g(3)=π(23+1)43(3+3)2letfindI=0dx(x2+1)32I=+dx(x2+1)3letw(z)=1(z2+1)3w(z)=1(zi)3(z+i)3thepolesofwareiandi(triples)residustheoremgive+w(z)dz=2iπRes(w,i)Res(w,i)=limzi1(31)!{(zi)3w(z)}(2)=limzi12{(z+i)3}(2)=limzi12{3(z+i)4}(1)=limzi32{4(z+i)5}=6(2i)5=625i5=632i=3.216.2i=316i+w(z)dz=2iπ×316i=3π8=2II=3π16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com