Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 56345 by maxmathsup by imad last updated on 14/Mar/19

let  f(a) =∫_0 ^∞      (dx/(x^n  +a^n ))   with n integr ≥2  and a>0  1) calculate f(a) intems of a  2) let g(a) =∫_0 ^∞    (dx/((x^n  +a^n )^2 ))  calculate g(a) interms of a  3) find the values of integrals ∫_0 ^∞   (dx/(x^8 +16))   and ∫_0 ^∞    (dx/((x^8  +16)^2 ))

letf(a)=0dxxn+anwithnintegr2anda>01)calculatef(a)intemsofa2)letg(a)=0dx(xn+an)2calculateg(a)intermsofa3)findthevaluesofintegrals0dxx8+16and0dx(x8+16)2

Commented by maxmathsup by imad last updated on 17/Mar/19

1) changement x=at give f(a) =∫_0 ^∞    ((adt)/(a^n t^n  +a^n )) =(1/a^(n−1) ) ∫_0 ^∞   (dt/(t^n  +1))  ∫_0 ^∞   (dt/(t^n  +1)) =_(t=u^(1/n) )     ∫_0 ^∞    (1/(n(1+u))) u^((1/n)−1)  du =(1/n) ∫_0 ^∞   (u^((1/n)−1) /(1+u)) du  =(1/n) (π/(sin((π/n)))) =(π/(nsin((π/n))))    (we have proved that ∫_0 ^∞   (x^(a−1) /(1+x)) dx =(π/(sin(πa))) with 0<a<1) ⇒  ★f(a) =(π/(n a^(n−1) sin((π/n))))★  with n≥2  2)we have f^′ (a) =∫_0 ^∞   (∂/∂a)((1/(x^n  +a^n )))dx =−∫_0 ^∞    ((na^(n−1) )/((x^n  +a^n )^2 ))dx  =−na^(n−1)  g(a) ⇒g(a) =−((f(a))/(na^(n−1) )) =−(1/(na^(n−1) )) (π/(n a^(n−1) sin((π/n)))) ⇒  ★g(a)=−(π/(n^2  a^(2n−2)  sin((π/n)))) ★  3) we have ∫_0 ^∞   (dx/(x^8  +16)) =∫_0 ^∞    (dx/(x^8  +((√2))^8 ))  ⇒n=8 and a=(√2) ⇒  ∫_0 ^∞   (dx/(x^8  +16)) = (π/(8((√2))^7  sin((π/8))))  also we have  ∫_0 ^∞   (dx/((x^8  +16)^2 )) =∫_0 ^∞    (dx/((x^2  +((√2))^8 )^2 )) ⇒n=8 and a=(√2)  at g(a) ⇒  ∫_0 ^∞    (dx/((x^8  +16)^2 )) =(π/(64 ((√2))^(14)  sin((π/8)))) =(π/(64 .2^7  sin((π/8))))   with  sin((π/8)) =((√(2−(√2)))/2) .

1)changementx=atgivef(a)=0adtantn+an=1an10dttn+10dttn+1=t=u1n01n(1+u)u1n1du=1n0u1n11+udu=1nπsin(πn)=πnsin(πn)(wehaveprovedthat0xa11+xdx=πsin(πa)with0<a<1)f(a)=πnan1sin(πn)withn22)wehavef(a)=0a(1xn+an)dx=0nan1(xn+an)2dx=nan1g(a)g(a)=f(a)nan1=1nan1πnan1sin(πn)g(a)=πn2a2n2sin(πn)3)wehave0dxx8+16=0dxx8+(2)8n=8anda=20dxx8+16=π8(2)7sin(π8)alsowehave0dx(x8+16)2=0dx(x2+(2)8)2n=8anda=2atg(a)0dx(x8+16)2=π64(2)14sin(π8)=π64.27sin(π8)withsin(π8)=222.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com