Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38210 by prof Abdo imad last updated on 22/Jun/18

let f(a)= ∫_0 ^π    (dθ/(a +sin^2 θ))   (a from R)  1) find f(a)  2)calculate g(a)= ∫_0 ^π    (dθ/((a+sin^2 θ)^2 ))  3)calculate ∫_0 ^π     (dθ/(1+sin^2 θ)) and ∫_0 ^π   (dθ/(2+sin^2 θ))  4) calculate ∫_0 ^π    (dθ/((3 +sin^2 θ)^2 )) .

letf(a)=0πdθa+sin2θ(afromR)1)findf(a)2)calculateg(a)=0πdθ(a+sin2θ)23)calculate0πdθ1+sin2θand0πdθ2+sin2θ4)calculate0πdθ(3+sin2θ)2.

Commented by math khazana by abdo last updated on 23/Jun/18

we have f(a) =∫_0 ^π     (dθ/(a +((1−cos(2θ))/2)))  = ∫_0 ^π   ((2dθ)/(2a+1 −cos(2θ))) =_(2θ=t)   ∫_0 ^(2π)     (2/(2a+1−cost)) (dt/2)  = ∫_0 ^(2π)     (dt/(2a+1 −cost))  changement e^(it) =z give  f(a) = ∫_(∣z∣=1)       (1/(2a+1−((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)     ((−2idz)/(z{  4a+2−z−z^(−1) }))  =∫_(∣z∣=1)   ((−2idz)/((4a+2)z−z^2 −1)) =∫_(∣z∣=1)    ((2idz)/(z^2 −(4a+2)z +1))  let ϕ(z)= ((2i)/(z^2  −(4a+2)z +1)) .poles of ϕ?  Δ^′  =(2a+1)^2  −1=4a^2  +4a =4a(a+1)  case 1  a(a+1)>0 ⇒z_1 = 2a+1 +2(√(a^2  +a))  z_2 =2a+1−2(√(a^2 +a))  ∣z_2 ∣ −1 =2a−2(√(a^2  +a))<0 and its clear that  ∣z_1 ∣−1>0(to elominate from residus)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_2 ) =((2i)/(z_2 −z_1 )) 2iπ  =((−4π)/(−4(√(a^2 +a)))) = (π/(√(a^2 +a))) ⇒  f(a)=(π/(√(a^2  +a)))  case 2 a(a+1)<0  ⇔−1<a<0 ⇒Δ^, =−4(−a(a+1))  =(2i(√(−a^2 −a)))^2   z_1 = 2a+1 +2i(√(−a^2 −a))  z_2 =2a+1−2i(√(−a^2 −a))  ∣z_1 ∣=(√( (2a+1)^2  +4(−a^2 −a)))  =(√(4a^2 +4a +1−4a^2 −4a))=1  ∣z_2 ∣=1 ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ {Res(ϕ,z_1 )+Res(ϕ,z_2 )}  Res(ϕ,z_1 ) = ((2i)/(z_1 −z_2 ))  Res(ϕ,z_2 ) = ((2i)/(z_2 −z_1 )) ⇒ ∫_(∣z∣=1)  ϕ(z)dz=0 ⇒f(a)=0

wehavef(a)=0πdθa+1cos(2θ)2=0π2dθ2a+1cos(2θ)=2θ=t02π22a+1costdt2=02πdt2a+1costchangementeit=zgivef(a)=z∣=112a+1z+z12dziz=z∣=12idzz{4a+2zz1}=z∣=12idz(4a+2)zz21=z∣=12idzz2(4a+2)z+1letφ(z)=2iz2(4a+2)z+1.polesofφ?Δ=(2a+1)21=4a2+4a=4a(a+1)case1a(a+1)>0z1=2a+1+2a2+az2=2a+12a2+az21=2a2a2+a<0anditsclearthatz11>0(toelominatefromresidus)z∣=1φ(z)dz=2iπRes(φ,z2)=2iz2z12iπ=4π4a2+a=πa2+af(a)=πa2+acase2a(a+1)<01<a<0Δ,=4(a(a+1))=(2ia2a)2z1=2a+1+2ia2az2=2a+12ia2az1∣=(2a+1)2+4(a2a)=4a2+4a+14a24a=1z2∣=1z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}Res(φ,z1)=2iz1z2Res(φ,z2)=2iz2z1z∣=1φ(z)dz=0f(a)=0

Commented by math khazana by abdo last updated on 23/Jun/18

2) we have f^′ (a) = ∫_0 ^π   (∂/∂a)( (1/(a+sin^2 θ)))dθ  =−∫_0 ^π       (dθ/((a+sin^2 θ)^2 )) =−g(a) ⇒  g(a) =−f^′ (a)   if  a(a+1)<0 ⇒g(a)=0  if a(a+1)>0 f(a)= (π/(√(a^2  +a))) ⇒  f^′ (a) = π{(a^2 +a)^(−(1/2)) }^′  =−(π/2)(2a+1)(a^2  +a)^(−(3/2))   = ((−π(2a+1))/(2(a^2 +a)(√(a^2  +a)))) ⇒  g(a) = (((2a+1)π)/(2(a^2  +a)(√(a^2  +a)))) .

2)wehavef(a)=0πa(1a+sin2θ)dθ=0πdθ(a+sin2θ)2=g(a)g(a)=f(a)ifa(a+1)<0g(a)=0ifa(a+1)>0f(a)=πa2+af(a)=π{(a2+a)12}=π2(2a+1)(a2+a)32=π(2a+1)2(a2+a)a2+ag(a)=(2a+1)π2(a2+a)a2+a.

Commented by math khazana by abdo last updated on 23/Jun/18

3) we have proved that  f(a)=(π/(√(a^2  +a))) if a(a+1)>0  so ∫_0 ^π     (dθ/(1+sin^2 θ)) =f(1) = (π/(√2))  ∫_0 ^π     (dθ/(2+sin^2 θ)) = f(2)= (π/(√6))    (/)

3)wehaveprovedthatf(a)=πa2+aifa(a+1)>0so0πdθ1+sin2θ=f(1)=π20πdθ2+sin2θ=f(2)=π6

Commented by math khazana by abdo last updated on 23/Jun/18

4) ∫_0 ^π      (dθ/((3+sin^2 θ)^2 )) =g(3)= ((7π)/(24(√(12)))) =((7π)/(48(√3))) .

4)0πdθ(3+sin2θ)2=g(3)=7π2412=7π483.

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18

∫_0 ^Π (dθ/(a+sin^2 θ))  ∫((sec^2 θ)/(asec^2 θ+tan^2 θ))dθ  t=tanθ  dt=sec^2 θdθ  ∫(dt/(a+at^2 +t^2 ))  ∫(dt/(a+t^2 (1+a)))  (1/(1+a))∫(dt/((a/(1+a))+t^2 ))  (1/(1+a))×(1/(((√a) )/(√(1+a))))tan^(−1) ((t/((√a)/(√(1+a)))))  =2∣(1/((√a) ×(√(1+a)) ))×tan^(−1) (((tanθ)/(((√a) )/((√(1+a)) ))))∣_0 ^(Π/2)    =2×(1/((√a) ×(√(1+a))))×(Π/2)  =(Π/(√(a+a^2 )))  Ans      ∫_0 ^Π f(θ)dθ=2∫_0 ^(Π/2) f(θ)dθ  when f(Π−θ)=f(θ)

0Πdθa+sin2θsec2θasec2θ+tan2θdθt=tanθdt=sec2θdθdta+at2+t2dta+t2(1+a)11+adta1+a+t211+a×1a1+atan1(ta1+a)=21a×1+a×tan1(tanθa1+a)0Π2=2×1a×1+a×Π2=Πa+a2Ans0Πf(θ)dθ=20Π2f(θ)dθwhenf(Πθ)=f(θ)

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18

g(a)=∫_0 ^Π (dθ/((a+sin^2 θ)^2 ))  f(a)=∫_0 ^Π (dθ/(a+sin^2 θ))  ((df(a))/da)=∫_0 ^Π (∂/∂a)(1/((a+sin^2 θ)))dθ  =∫_0 ^Π ((−1)/((a+sin^2 θ)^2 ))dθ  so((df(a))/da)=−g(a)  g(a)=−(d/da)((Π/((√(a+a^2 )) )))  g(a)=−Π×((−1)/(2(a+a^2 )^(3/2) ))×(1+2a)  g(a)=((Π(1+2a))/(2(a+a^2 )^(3/2) ))   ANS  i have proved ∫_0 ^Π (dθ/(a+sin^2 θ))=(Π/(√(a+a^2 )))

g(a)=0Πdθ(a+sin2θ)2f(a)=0Πdθa+sin2θdf(a)da=0Πa1(a+sin2θ)dθ=0Π1(a+sin2θ)2dθsodf(a)da=g(a)g(a)=dda(Πa+a2)g(a)=Π×12(a+a2)32×(1+2a)g(a)=Π(1+2a)2(a+a2)32ANSihaveproved0Πdθa+sin2θ=Πa+a2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com