Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63782 by mathmax by abdo last updated on 09/Jul/19

let f(a) =∫_(−∞) ^(+∞)    (dx/((a^2 +x^2 )^3 ))   with a>0  1) calculate f(a)  2)calculste also g(a) =∫_(−∞) ^(+∞)    (dx/((a^2  +x^2 )^4 ))  3) find the values of integrals  ∫_0 ^∞   (dx/((x^2  +1)^3 ))  ∫_0 ^∞  (dx/((x^2 +2)^4 ))

letf(a)=+dx(a2+x2)3witha>01)calculatef(a)2)calculstealsog(a)=+dx(a2+x2)43)findthevaluesofintegrals0dx(x2+1)30dx(x2+2)4

Commented by mathmax by abdo last updated on 09/Jul/19

1) let  h(a) =∫_(−∞) ^(+∞)   (dx/((a^2  +x^2 )^2 ))  we have h^′ (a) =−∫_(−∞) ^(+∞)  ((2(2a)(a^2 +x^2 ))/((a^2  +x^2 )^4 ))  =−∫_(−∞) ^(+∞)  ((4a)/((a^2  +x^2 )^3 ))dx =−4a f(a) ⇒f(a)=−(1/(4a))h^′ (a) let find h(a)  we have h(a) =_(x=at)     ∫_(−∞) ^(+∞)   ((adt)/(a^4 (1+t^2 )^2 )) =(1/a^3 ) ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^2 ))  let w(z) =(1/((z^2 +1)^2 )) ⇒f(z) =(1/((z−i)^2 (z+i)^2 )) residus theorem give  ∫_(−∞) ^(+∞)  w(z)dz =2iπ Res(w,i)  Res(w,i) =lim_(z→i)     (1/((2−1)!)){(z−i)^2 w(z)}^((1))   =lim_(z→i)  {(z+i)^(−2) }^((1))  =lim_(z→i)   −2(z+i)^(−3) =((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i)) ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ(1/(4i)) =(π/2) ⇒h(a) =(π/(2a^3 )) ⇒  h^′ (a)=(π/2) ((−3a^2 )/a^6 ) =((−3π)/(2a^4 )) ⇒f(a) =−(1/(4a))(((−3π)/(2a^4 ))) =((3π)/(8a^5 ))  ★f(a) =((3π)/(8a^5 )) ★

1)leth(a)=+dx(a2+x2)2wehaveh(a)=+2(2a)(a2+x2)(a2+x2)4=+4a(a2+x2)3dx=4af(a)f(a)=14ah(a)letfindh(a)wehaveh(a)=x=at+adta4(1+t2)2=1a3+dt(t2+1)2letw(z)=1(z2+1)2f(z)=1(zi)2(z+i)2residustheoremgive+w(z)dz=2iπRes(w,i)Res(w,i)=limzi1(21)!{(zi)2w(z)}(1)=limzi{(z+i)2}(1)=limzi2(z+i)3=2(2i)3=28i=14i+w(z)dz=2iπ14i=π2h(a)=π2a3h(a)=π23a2a6=3π2a4f(a)=14a(3π2a4)=3π8a5f(a)=3π8a5

Commented by mathmax by abdo last updated on 09/Jul/19

2) we have by derivation f^′ (a) =−∫_(−∞) ^(+∞)  ((3(2a)(a^2  +x^2 )^2 )/((a^2  +x^2 )^6 ))dx  =−6a ∫_(−∞) ^(+∞)    (dx/((a^2  +x^2 )^4 )) =−6a g(a) ⇒g(a) =−(1/(6a))f^′ (a)  but f(a) =((3π)/(8a^5 )) ⇒f^′ (a) =((3π)/8)(−((5a^4 )/a^(10) )) =−((15π)/(8 a^6 )) ⇒  g(a) =−(1/(6a))(−((15π)/(8a^6 ))) =((15π)/(48 a^7 ))

2)wehavebyderivationf(a)=+3(2a)(a2+x2)2(a2+x2)6dx=6a+dx(a2+x2)4=6ag(a)g(a)=16af(a)butf(a)=3π8a5f(a)=3π8(5a4a10)=15π8a6g(a)=16a(15π8a6)=15π48a7

Commented by mathmax by abdo last updated on 09/Jul/19

⇒g(a) =((3.5π)/(3.16a^7 )) ⇒g(a) =((5π)/(16a^7 )) .

g(a)=3.5π3.16a7g(a)=5π16a7.

Commented by mathmax by abdo last updated on 09/Jul/19

3) we have proved that ∫_(−∞) ^(+∞)   (dx/((a^2  +x^2 )^3 )) =((3π)/(8a^5 ))  a=1 ⇒∫_(−∞) ^(+∞)   (dx/((x^2  +1)^3 )) =((3π)/8) ⇒2 ∫_0 ^∞     (dx/((x^2  +1)^3 )) =((3π)/8) ⇒  ∫_0 ^∞   (dx/((x^2  +1)^3 )) =((3π)/(16)) . also we have proved that  ∫_(−∞) ^(+∞)    (dx/((x^2  +a^2 )^4 )) =((5π)/(16a^7 ))  a=(√2) ⇒∫_(−∞) ^(+∞)   (dx/((x^2  +2)^4 )) =((5π)/(16 ((√2))^7 )) ⇒∫_0 ^∞    (dx/((x^2  +2)^4 )) =((5π)/(32((√2))^7 )) .

3)wehaveprovedthat+dx(a2+x2)3=3π8a5a=1+dx(x2+1)3=3π820dx(x2+1)3=3π80dx(x2+1)3=3π16.alsowehaveprovedthat+dx(x2+a2)4=5π16a7a=2+dx(x2+2)4=5π16(2)70dx(x2+2)4=5π32(2)7.

Answered by MJS last updated on 09/Jul/19

reduction formula  ∫(dx/((px^2 +q)^n ))=(x/(2q(n−1)(px^2 +q)^(n−1) ))+((2n−3)/(2q(n−1)))∫(dx/((px^2 +q)^(n−1) ))  ∫(dx/((x^2 +a^2 )^3 ))=  p=1; q=a^2 ; n=3  =(x/(4a^2 (x^2 +a^2 )^2 ))+(3/(4a^2 ))∫(dx/((x^2 +a^2 )^2 ))=  p=1; q=a^2 ; n=2  =(x/(4a^2 (x^2 +a^2 )^2 ))+(3/(4a^2 ))×(x/(2a^2 (x^2 +a^2 )))+(3/(4a^2 ))×(1/(2a^2 ))∫(dx/(x^2 +a^2 ))=  =(x/(4a^2 (x^2 +a^2 )^2 ))+((3x)/(8a^4 (x^2 +a^2 )))+(3/(8a^4 ))×(1/a)arctan (x/a) =  =((x(3x^2 +5a^2 ))/(8a^4 (x^2 +a^2 )^2 ))+(3/(8a^5 ))arctan (x/a) +C  f(a)=∫_(−∞) ^(+∞) (dx/((x^2 +a^2 )^3 ))=((3π)/(8a^5 ))  for g(a) we go the same path  ∫(dx/((x^2 +a^2 )^4 ))=((x(15x^4 +40a^2 x^2 +33a^4 ))/(48a^6 (x^2 +a^2 )^3 ))+(5/(16a^7 ))arctan (x/2) +C  g(a)=∫_(−∞) ^(+∞) (dx/((x^2 +a^2 )^4 ))=((5π)/(16a^7 ))

reductionformuladx(px2+q)n=x2q(n1)(px2+q)n1+2n32q(n1)dx(px2+q)n1dx(x2+a2)3=p=1;q=a2;n=3=x4a2(x2+a2)2+34a2dx(x2+a2)2=p=1;q=a2;n=2=x4a2(x2+a2)2+34a2×x2a2(x2+a2)+34a2×12a2dxx2+a2==x4a2(x2+a2)2+3x8a4(x2+a2)+38a4×1aarctanxa==x(3x2+5a2)8a4(x2+a2)2+38a5arctanxa+Cf(a)=+dx(x2+a2)3=3π8a5forg(a)wegothesamepathdx(x2+a2)4=x(15x4+40a2x2+33a4)48a6(x2+a2)3+516a7arctanx2+Cg(a)=+dx(x2+a2)4=5π16a7

Commented by turbo msup by abdo last updated on 09/Jul/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com