Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61229 by maxmathsup by imad last updated on 30/May/19

let f_n (a) =∫_0 ^a  x^n (√(a^2 −x^2 ))dx  with a>0  1) determine a explicit form of f(a)  2) let g_n (a) =f^′ (a)   give g_n (a) at form of integral and give its  value   3) find the value of  ∫_0 ^2  x^3 (√(4−x^2 ))dx  and ∫_0 ^(√3) x^4 (√(3−x^2 ))dx

letfn(a)=0axna2x2dxwitha>01)determineaexplicitformoff(a)2)letgn(a)=f(a)givegn(a)atformofintegralandgiveitsvalue3)findthevalueof02x34x2dxand03x43x2dx

Answered by perlman last updated on 30/May/19

1) put x=asin(t)  fn(a)=a^(n+1) ∫_0 ^(π/2) sin^n (t)(√((a^2 −a^2 sin^2 (t) )) cos(t)dt=  =a^(n+2) ∫_0 ^(π/2) sin^n (t)cos^2 (t)dt=a∫sin^n (t)dt−a^(n+2) ∫sin^(n+2) (t)dt  let I_n =∫_0 ^(π/2) sin^n (t)dt=∫sin(t)sin^(n−1) (t)dt=[−cos(t)sin^(n−1) (t)]+(n−1)∫cos^2 (t)sin^(n−2) (t)dt  (n−1)∫_0 ^(π/2) (1−sin^2 (t))sin^((n−2)) (t)dt=(n−1)I_(n−2) −(n−1)I_n =I_n   I_n =((n−1)/n)I_(n−2)   I_0 =(π/2)  I_1 =1  I_(2n) =((2n−1)/(2n))I_(2(n−1))   I_(2n) =((2n−1)/(2n)).((2(n−1)−1)/(2(n−1)))......((2−1)/2)I_0 =(((2n−1)(2n−3)....(1))/(2n.2(n−1)....2(1)))I_0   =((2n(2n−1)(2n−2).......1)/([2^n n!]^2 ))I_0 =(((2n)!)/(2^(2n) (n!)^2 ))(π/2)  I_(2n+1) =((2n)/(2n+1))I_(2n−1) =((2n)/(2n+1)).((2n−2)/(2n−1))......(2/3)I_1 =(((2^n n!)^2 .2)/((2n+1)!))=((2^(2n+1) (n!)^2 )/((2n+1)!))  fn(a)=a^(n+2) (I_n −I_(n+2) )  gn(a)=(d/da)∫_0 ^a x^n (√((a^2 −x^2 )))dx=(d/da)∫_0 ^1 a^n t^n a^2 (√((1−t^2 )))dt=∫_0 ^1 (d/da)(a^(n+2) t^n (√((1−t^2 )) dt)=  (n+2)∫_0 ^1 a^(n+1) t^n (√((1−t^2 )) dt  ∫_0 ^2 x^3 (√((4−x^2 )))dx  n=3 a=2   =2^5 (I1−I3)=2^5 (1−(2/3))=((32)/3)

1)putx=asin(t)fn(a)=an+10π2sinn(t)(a2a2sin2(t)cos(t)dt==an+20π2sinn(t)cos2(t)dt=asinn(t)dtan+2sinn+2(t)dtletIn=0π2sinn(t)dt=sin(t)sinn1(t)dt=[cos(t)sinn1(t)]+(n1)cos2(t)sinn2(t)dt(n1)0π2(1sin2(t))sin(n2)(t)dt=(n1)In2(n1)In=InIn=n1nIn2I0=π2I1=1I2n=2n12nI2(n1)I2n=2n12n.2(n1)12(n1)......212I0=(2n1)(2n3)....(1)2n.2(n1)....2(1)I0=2n(2n1)(2n2).......1[2nn!]2I0=(2n)!22n(n!)2π2I2n+1=2n2n+1I2n1=2n2n+1.2n22n1......23I1=(2nn!)2.2(2n+1)!=22n+1(n!)2(2n+1)!fn(a)=an+2(InIn+2)gn(a)=dda0axn(a2x2)dx=dda01antna2(1t2)dt=01dda(an+2tn(1t2dt)=(n+2)01an+1tn(1t2dt02x3(4x2)dxn=3a=2=25(I1I3)=25(123)=323

Commented by maxmathsup by imad last updated on 31/May/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com