All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61229 by maxmathsup by imad last updated on 30/May/19
letfn(a)=∫0axna2−x2dxwitha>01)determineaexplicitformoff(a)2)letgn(a)=f′(a)givegn(a)atformofintegralandgiveitsvalue3)findthevalueof∫02x34−x2dxand∫03x43−x2dx
Answered by perlman last updated on 30/May/19
1)putx=asin(t)fn(a)=an+1∫0π2sinn(t)(a2−a2sin2(t)cos(t)dt==an+2∫0π2sinn(t)cos2(t)dt=a∫sinn(t)dt−an+2∫sinn+2(t)dtletIn=∫0π2sinn(t)dt=∫sin(t)sinn−1(t)dt=[−cos(t)sinn−1(t)]+(n−1)∫cos2(t)sinn−2(t)dt(n−1)∫0π2(1−sin2(t))sin(n−2)(t)dt=(n−1)In−2−(n−1)In=InIn=n−1nIn−2I0=π2I1=1I2n=2n−12nI2(n−1)I2n=2n−12n.2(n−1)−12(n−1)......2−12I0=(2n−1)(2n−3)....(1)2n.2(n−1)....2(1)I0=2n(2n−1)(2n−2).......1[2nn!]2I0=(2n)!22n(n!)2π2I2n+1=2n2n+1I2n−1=2n2n+1.2n−22n−1......23I1=(2nn!)2.2(2n+1)!=22n+1(n!)2(2n+1)!fn(a)=an+2(In−In+2)gn(a)=dda∫0axn(a2−x2)dx=dda∫01antna2(1−t2)dt=∫01dda(an+2tn(1−t2dt)=(n+2)∫01an+1tn(1−t2dt∫02x3(4−x2)dxn=3a=2=25(I1−I3)=25(1−23)=323
Commented by maxmathsup by imad last updated on 31/May/19
thankssir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com