All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 52680 by maxmathsup by imad last updated on 11/Jan/19
letfn(x)=sin(nx)n3andf(x)=∑n=1∞fn(x)calculate∫0πf(x)dx.
Commented by maxmathsup by imad last updated on 11/Jan/19
itsclearthattheserieΣfn(x)convergesimpl.andunif.because∣fn(x)∣⩽1n3andΣ1n3convergeswehave∫0πf(x)dx=∫0π∑n=1∞sin(nx)n3=∑n=1∞1n3∫0πsin(nx)dx=∑n=1∞1n3[−1ncos(nx)]0π=∑n=1∞1n4(1−(−1)n)=2∑n=0∞1(2n+1)4butwehaveprovedthat∑n=1∞1n4=π490⇒∑n=0∞1(2n+1)4+116∑n=1∞1n4=π490⇒∑n=0∞1(2n+1)4=π490−116π490=(1−116)π490=1516π490=3.53.3016π4=π46.16=π496⇒∫0πf(x)dx=2.π496⇒∫0πf(x)dx=π448.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com