Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52683 by maxmathsup by imad last updated on 11/Jan/19

let f(λ) =∫_(−∞) ^(+∞)   ((sin(λx))/((x^2  +2λx +1)^2 ))dx    with ∣λ∣<1  1) find the value of f(λ)  2) calculate ∫_(−∞) ^(+∞)    ((sin((x/(2 ))))/((x^2   +x+1)^2 ))dx  3) find  A(θ) =∫_(−∞) ^(+∞)     ((sin((cosθ)x))/((x^2  +2cosθ x +1)^2 ))  that we suppose 0<θ<(π/2)

letf(λ)=+sin(λx)(x2+2λx+1)2dxwithλ∣<11)findthevalueoff(λ)2)calculate+sin(x2)(x2+x+1)2dx3)findA(θ)=+sin((cosθ)x)(x2+2cosθx+1)2thatwesuppose0<θ<π2

Commented by maxmathsup by imad last updated on 13/Jan/19

1) f(λ)=Im(∫_(−∞) ^(+∞)    (e^(iλx) /((x^2  +2λx +1)^2 ))dx) let consder the complex function  ϕ(z)= (e^(iλz) /((x^2 +2λx +1)^2 )) poles of ϕ?  let determine roots of x^2  +2λx +1  Δ^′ =λ^2 −1<0 ⇒Δ^′  =−(1−λ^2 ) =(i(√(1−λ^2 )))^2  ⇒z_1 =−λ +i(√(1−λ^2 ))  and z_2 =−λ−i(√(1−λ^2 ))    ⇒ ϕ have double poles z_1  and z_2   ϕ(z) =(e^(iλz) /((z−z_1 )^2 (z−z_2 )^2 ))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 ) but  Res(ϕ,z_1 )=lim_(z→z_1 )  (1/((2−1)!)) {(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )    { (e^(iλz) /((z−z_2 )^2 ))}^((1))   =lim_(z→z_1 )  ((iλ e^(iλz) (z−z_2 )^2  −2(z−z_2 )e^(iλz) )/((z−z_2 )^4 )) =lim_(z→z_1 )  (((iλ(z−z_2 )−2)e^(iλz) )/((z−z_2 )^3 ))  =(((iλ(z_1 −z_2 )−2)e^(iz_1 ) )/((z_1 −z_2 )^3 )) =(((iλ(2i(√(1−λ^2 )))−2)e^(iλz_1 ) )/((2i(√(1−λ^2 )))^3 ))  =(((−2λ(√(1−λ^2 ))−2)e^(iλ(−λ+i(√(1−λ^2 )))) )/(−8i(1−λ^2 )(√(1−λ^2 )))) =(((1+λ(√(1−λ^2 )))e^(−iλ^2 )  e^(−λ(√(1−λ^2 ))) )/(4i(1−λ^2 )(√(1−λ^2 ))))  ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (((1+λ(√(1−λ^2 )))e^(−λ(√(1−λ^2 ))) )/(4i(1−λ^2 )(√(1−λ^2 )))) e^(−iλ^2 )    =(π/2) (((1+λ(√(1−λ^2 )))e^(−λ(√(1−λ^2 ))) )/((1−λ^2 )(√(1−λ^2 )))) (cos(λ^2 )−isin(λ^2 )) ⇒  f(λ) =−(π/2) sin(λ^2 ) (((1+λ(√(1−λ^2 )))e^(−λ(√(1−λ^2 ))) )/((1−λ^2 )(√(1−λ^2 )))) .

1)f(λ)=Im(+eiλx(x2+2λx+1)2dx)letconsderthecomplexfunctionφ(z)=eiλz(x2+2λx+1)2polesofφ?letdeterminerootsofx2+2λx+1Δ=λ21<0Δ=(1λ2)=(i1λ2)2z1=λ+i1λ2andz2=λi1λ2φhavedoublepolesz1andz2φ(z)=eiλz(zz1)2(zz2)2residustheoremgive+φ(z)dz=2iπRes(φ,z1)butRes(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{eiλz(zz2)2}(1)=limzz1iλeiλz(zz2)22(zz2)eiλz(zz2)4=limzz1(iλ(zz2)2)eiλz(zz2)3=(iλ(z1z2)2)eiz1(z1z2)3=(iλ(2i1λ2)2)eiλz1(2i1λ2)3=(2λ1λ22)eiλ(λ+i1λ2)8i(1λ2)1λ2=(1+λ1λ2)eiλ2eλ1λ24i(1λ2)1λ2+φ(z)dz=2iπ(1+λ1λ2)eλ1λ24i(1λ2)1λ2eiλ2=π2(1+λ1λ2)eλ1λ2(1λ2)1λ2(cos(λ2)isin(λ2))f(λ)=π2sin(λ2)(1+λ1λ2)eλ1λ2(1λ2)1λ2.

Commented by maxmathsup by imad last updated on 13/Jan/19

2) ∫_(−∞) ^(+∞)  ((sin((x/2)))/((x^2  +x+1)^2 )) dx =f((1/2))=−(π/2)sin((1/4))(((1+(1/2)(√(3/4)))e^(−(1/2)(√(3/4))) )/((3/4)(√(3/4))))  =−(π/2)sin((1/4))(((1+((√3)/4))e^(−((√3)/4)) )/((3(√3))/8)) =−4π sin((1/4))(((1+((√3)/4))e^(−((√3)/4)) )/(3(√3))) .

2)+sin(x2)(x2+x+1)2dx=f(12)=π2sin(14)(1+1234)e12343434=π2sin(14)(1+34)e34338=4πsin(14)(1+34)e3433.

Commented by Abdo msup. last updated on 13/Jan/19

3) A(θ)=f(cosθ)=−(π/2)sin(cos^2 θ)(((1+cosθsinθ)e^(−cosθsinθ) )/(sin^3 θ))

3)A(θ)=f(cosθ)=π2sin(cos2θ)(1+cosθsinθ)ecosθsinθsin3θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com