All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 52703 by maxmathsup by imad last updated on 11/Jan/19
letf(t)=∫0∞cos2(tx)(x2+3)2dxwitht⩾01)giveaexplicitformoff(t)2)findthevalueof∫0∞xsin(2tx)(x2+3)2dx3)givethevaluesofintegrals∫0∞dx(x2+3)2and∫0∞cos2(πx)(x2+3)2dx4)givethevaluesofintegrals∫0∞xsin(πx)(x2+3)2and∫0∞xsin(πx2)(x2+3)2dx.
Commented by Abdo msup. last updated on 13/Jan/19
channgementx=3ugivef(t)=∫0∞cos2(3tu)9(u2+1)23du=39∫0+∞cos2(3tu)(u2+1)2du=318∫−∞+∞cos2(3tu)(u2+1)2du=318∫−∞+∞1+cos(23tu)2(u2+1)2du=336∫−∞+∞du(u2+1)2+336∫−∞+∞cos(23tu)du(u2+1)2∫−∞+∞du(u2+1)2=u=tanθ∫−π2π21+tan2θ(1+tan2θ)2dθ=2∫0π2cos2θdθ=2∫0π21+cos(2θ)2dθ=π2+[12sin(2θ)]0π2=π2letdetermine∫−∞+∞cos(23tu)(u2+1)2du=II=Re(∫−∞+∞e2i3tu(u2+1)2du)letφ(z)=e2i3tz(z2+1)2⇒φ(z)=e2i3tz(z−i)2(z+i)2thepolesofφareiand−i(doubles)so∫−∞+∞φ(z)dz=2iπRe(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{e2i3tz(z+i)2}(1)=limz→i2i3te2i3tz(z+i)2−2(z+i)e2i3tz(z+i)4=limz→i(2i3t(z+i)−2)e2i3tz(z+i)3=(2i3t(2i)−2)e−23t(2i)3=(−4i3t−2)e−23t−8i=(2i3t+1)e−23t4i⇒∫−∞+∞φ(z)dz=2iπ(2i3t+1)e−23t4i=π2(2i3t+1)e−23tbutI=Re(∫−∞+∞φ(z)dz)=π2e−23t⇒f(t)=π372+336{π2e−23t}⇒f(t)=π372(1+e−23t).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com