Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52703 by maxmathsup by imad last updated on 11/Jan/19

let f(t) =∫_0 ^∞   ((cos^2 (tx))/((x^2 +3)^2 )) dx  with t ≥0  1) give a explicit form of f(t)  2) find the value of  ∫_0 ^∞   ((xsin(2tx))/((x^2  +3)^2 )) dx  3) give the values of integrals  ∫_0 ^∞    (dx/((x^2  +3)^2 )) and   ∫_0 ^∞   ((cos^2 (πx))/((x^2  +3)^2 ))dx  4) give the values of integrals ∫_0 ^∞    ((xsin(πx))/((x^2  +3)^2 )) and   ∫_0 ^∞   ((xsin(((πx)/2)))/((x^2  +3)^2 )) dx .

letf(t)=0cos2(tx)(x2+3)2dxwitht01)giveaexplicitformoff(t)2)findthevalueof0xsin(2tx)(x2+3)2dx3)givethevaluesofintegrals0dx(x2+3)2and0cos2(πx)(x2+3)2dx4)givethevaluesofintegrals0xsin(πx)(x2+3)2and0xsin(πx2)(x2+3)2dx.

Commented by Abdo msup. last updated on 13/Jan/19

channgement x=(√3)u give   f(t)=∫_0 ^∞   ((cos^2 ((√3)tu))/(9(u^2  +1)^2 )) (√3)du  =((√3)/9) ∫_0 ^(+∞)    ((cos^2 ((√3)tu))/((u^2  +1)^2 )) du =((√3)/(18)) ∫_(−∞) ^(+∞)  ((cos^2 ((√3)tu))/((u^2  +1)^2 ))du  =((√3)/(18)) ∫_(−∞) ^(+∞)    ((1+cos(2(√3)tu))/(2(u^2  +1)^2 ))du  =((√3)/(36)) ∫_(−∞) ^(+∞)   (du/((u^2  +1)^2 )) +((√3)/(36)) ∫_(−∞) ^(+∞)   ((cos(2(√3)tu)du)/((u^2  +1)^2 ))  ∫_(−∞) ^(+∞)    (du/((u^2  +1)^2 )) =_(u=tanθ)    ∫_(−(π/2)) ^(π/2)  ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ  =2 ∫_0 ^(π/2)  cos^2 θ dθ =2 ∫_0 ^(π/2)  ((1+cos(2θ))/2) dθ  =(π/2) +[(1/2)sin(2θ)]_0 ^(π/2)   =(π/2)  let determine   ∫_(−∞) ^(+∞)    ((cos(2(√3)tu))/((u^2  +1)^2 )) du =I  I =Re( ∫_(−∞) ^(+∞)    (e^(2i(√3)tu) /((u^2  +1)^2 )) du) let  ϕ(z)= (e^(2i(√3)tz) /((z^2  +1)^2 )) ⇒ϕ(z)=(e^(2i(√3)tz) /((z−i)^2 (z+i)^2 ))  the poles of ϕ are i and −i(doubles) so  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Re(ϕ,i)  Res(ϕ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i) { (e^(2i(√3)t z) /((z+i)^2 ))}^((1))   =lim_(z→i)   ((2i(√3)t e^(2i(√3)tz) (z+i)^2  −2(z+i)e^(2i(√3)tz) )/((z+i)^4 ))  =lim_(z→i)   (((2i(√3)t (z+i)−2)e^(2i(√3)tz) )/((z+i)^3 ))  =(((2i(√3)t(2i)−2)e^(−2(√3)t) )/((2i)^3 )) =(((−4i(√3)t−2) e^(−2(√3)t) )/(−8i))  =(((2i(√3)t +1)e^(−2(√3)t) )/(4i)) ⇒∫_(−∞) ^(+∞) ϕ(z)dz=  2iπ (((2i(√3)t +1)e^(−2(√3)t) )/(4i)) =(π/2)(2i(√3)t +1)e^(−2(√3)t)  but  I =Re(∫_(−∞) ^(+∞) ϕ(z)dz) =(π/2) e^(−2(√3)t)  ⇒  f(t)=((π(√3))/(72)) +((√3)/(36)){ (π/2) e^(−2(√3)t) } ⇒  f(t) =((π(√3))/(72))(1+e^(−2(√3)t) )  .

channgementx=3ugivef(t)=0cos2(3tu)9(u2+1)23du=390+cos2(3tu)(u2+1)2du=318+cos2(3tu)(u2+1)2du=318+1+cos(23tu)2(u2+1)2du=336+du(u2+1)2+336+cos(23tu)du(u2+1)2+du(u2+1)2=u=tanθπ2π21+tan2θ(1+tan2θ)2dθ=20π2cos2θdθ=20π21+cos(2θ)2dθ=π2+[12sin(2θ)]0π2=π2letdetermine+cos(23tu)(u2+1)2du=II=Re(+e2i3tu(u2+1)2du)letφ(z)=e2i3tz(z2+1)2φ(z)=e2i3tz(zi)2(z+i)2thepolesofφareiandi(doubles)so+φ(z)dz=2iπRe(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{e2i3tz(z+i)2}(1)=limzi2i3te2i3tz(z+i)22(z+i)e2i3tz(z+i)4=limzi(2i3t(z+i)2)e2i3tz(z+i)3=(2i3t(2i)2)e23t(2i)3=(4i3t2)e23t8i=(2i3t+1)e23t4i+φ(z)dz=2iπ(2i3t+1)e23t4i=π2(2i3t+1)e23tbutI=Re(+φ(z)dz)=π2e23tf(t)=π372+336{π2e23t}f(t)=π372(1+e23t).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com