All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35678 by abdo imad last updated on 21/May/18
letf(t)=∫0∞e−tx2arctan(x2)x2dxwitht>01)studytheexistencteoff(t)2)calculatef′(t)3)findasimpleformoff(t).
Commented by prof Abdo imad last updated on 23/May/18
1)f(t)=∫01e−tx2arctan(x2)x2dx+∫1+∞e−tx2arctan(x2)x2dx=I+Jbutwehavee−tx2arctan(x2)x2∼e−tx2⇒limx→0e−tx2arctan(x2)x2=1soIconvergesalsowehavelimx→+∞x2e−tx2arctan(x2)x2=0thecomvergenceofJisassuredsof(t)?existsfort>02)f′(t)=∫0∞∂∂t{e−tx2arctan(x2)x2}dx=−∫0∞e−tx2arctan(x2)dx.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com