Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65773 by mathmax by abdo last updated on 03/Aug/19

let f(x) =∫_0 ^1   (dt/(1+x(√(1+t^2 ))))  with x>0  1)detemine a explicit form of f(x)  2)find also  g(x) =∫_0 ^1   ((√(1+t^2 ))/((1+x(√(1+t^2 )))^2 ))dt  3) find the value of integrals  ∫_0 ^1  (dt/(1+2(√(1+t^2 )))) and   ∫_0 ^1      (dt/((1+2(√(1+t^2 )))^2 ))

letf(x)=01dt1+x1+t2withx>01)detemineaexplicitformoff(x)2)findalsog(x)=011+t2(1+x1+t2)2dt3)findthevalueofintegrals01dt1+21+t2and01dt(1+21+t2)2

Commented by mathmax by abdo last updated on 06/Aug/19

2)we have f^′ (x) =−∫_0 ^1   (((√(1+t^2 ))dt)/((1+x(√(1+t^2 )))^2 )) =−g(x) ⇒g(x)=−f^′ (x)  rest to calculate f^′ (x)  3)changement t =sht give I=∫_0 ^1  (dt/(1+2(√(1+t^2 ))))  =∫_0 ^(ln(1+(√2)))    ((ch(t)dt)/(1+2ch(t))) =∫_0 ^(ln(1+(√2)))   (((e^t  +e^(−t) )/2)/(1+2((e^t  +e^(−t) )/2)))dt  =(1/2)∫_0 ^(ln(1+(√2)))    ((e^t  +e^(−t) )/(1+e^t  +e^(−t) ))dt  =_(e^t =x)     (1/2)∫_1 ^(1+(√2))    ((x+x^(−1) )/(1+x+x^(−1) ))(dx/x)  =(1/2) ∫_1 ^(1+(√2))    ((x^2  +1)/(x^2 (1+x+x^(−1) )))dx =(1/2)∫_1 ^(1+(√2))   ((x^2  +1)/(x^2  +x^3  +x))dx  =(1/2)∫_1 ^(1+(√2))    ((x^2  +1)/(x(x^2  +x+1)))dx  let decomposeF(x)=((x^2  +1)/(x(x^2  +x+1)))  F(x) =(a/x) +((bx+c)/(x^2  +x+1))  a =lim_(x→0) xF(x) =1  lim_(x→+∞) xF(x) =1 =a+b ⇒b=1−a=0 ⇒F(x)=(1/x) +(c/(x^2  +x+1))  F(1) =(2/3) =1 +(c/3) ⇒2 =3 +c ⇒c =−1⇒F(x)=(1/x)−(1/(x^2  +x+1))  ⇒ I =(1/2){ ∫_1 ^(1+(√2)) (dx/x)−∫_1 ^(1+(√2))   (dx/(x^2  +x+1))}  =(1/2)ln(1+(√2))−(1/2)∫_1 ^(1+(√2))   (dx/(x^2  +x+1))  ∫_1 ^(1+(√2))   (dx/(x^2  +x+1)) =∫_1 ^(1+(√2))   (dx/((x+(1/2))^2  +(3/4))) =_(x+(1/2)=((√3)/2)u)  (4/3)  ∫_(√3) ^((3+2(√2))/3)  (1/(1+u^2 ))((√3)/2)du  = (2/(√3)) [arctanu]_(√3) ^((3+2(√2))/3)  =(2/(√3)){ arctan(((3+2(√2))/3))−arctan((√3))}⇒  I =(1/2)ln(1+(√2))−(1/(√3)){arctan(((3+2(√2))/3))−arctan((√3))}

2)wehavef(x)=011+t2dt(1+x1+t2)2=g(x)g(x)=f(x)resttocalculatef(x)3)changementt=shtgiveI=01dt1+21+t2=0ln(1+2)ch(t)dt1+2ch(t)=0ln(1+2)et+et21+2et+et2dt=120ln(1+2)et+et1+et+etdt=et=x1211+2x+x11+x+x1dxx=1211+2x2+1x2(1+x+x1)dx=1211+2x2+1x2+x3+xdx=1211+2x2+1x(x2+x+1)dxletdecomposeF(x)=x2+1x(x2+x+1)F(x)=ax+bx+cx2+x+1a=limx0xF(x)=1limx+xF(x)=1=a+bb=1a=0F(x)=1x+cx2+x+1F(1)=23=1+c32=3+cc=1F(x)=1x1x2+x+1I=12{11+2dxx11+2dxx2+x+1}=12ln(1+2)1211+2dxx2+x+111+2dxx2+x+1=11+2dx(x+12)2+34=x+12=32u4333+22311+u232du=23[arctanu]33+223=23{arctan(3+223)arctan(3)}I=12ln(1+2)13{arctan(3+223)arctan(3)}

Commented by mathmax by abdo last updated on 06/Aug/19

1)f(x) =∫_0 ^1   (dt/(1+x(√(1+t^2 ))))  changement t =sh(u) give  f(x)=∫_0 ^(ln(1+(√2)))   ((chu)/(1+xchu))du =∫_0 ^(ln(1+(√2)))    (((e^u +e^(−u) )/2)/(1+x((e^u +e^(−u) )/2)))du  = ∫_0 ^(ln(1+(√2)))     ((e^u +e^(−u) )/(2 +xe^u  +x e^(−u) )) du  =_(e^u =z)    ∫_1 ^(1+(√2)) ((z+z^(−1) )/(2+xz+xz^(−1) ))(dz/z)  = ∫_1 ^(1+(√2))      ((z^2  +1)/(z^2 (2+xz +xz^(−1) )))dz =∫_1 ^(1+(√2))   ((z^2  +1)/(2z^2  +xz^3  +xz))dz  =∫_1 ^(1+(√2))   ((z^2  +1)/(z(xz^2  +2z+x)))dz let decomposeF(z) =((z^2  +1)/(z(xz^2  +2z+x)))  xz^2  +2z +x =0 →Δ^′  =1−x^2   case 1  1−x^2 >0 ⇒0<x<1 ⇒z_1 =((−1+(√(1−x^2 )))/x)  z_2 =((−1−(√(1−x^2 )))/x) ⇒F(z) =((z^2  +1)/(xz(z−z_1 )(z−z_2 )))  =(a/z) +(b/(z−z_1 )) +(c/(z−z_2 ))  a =lim_(z→0) zF(z) =(1/x)  b =lim_(z→z_1 )   (z−z_1 )F(z) =((z_1 ^2  +1)/(xz_1 (z_1 −z_2 )))   c =lim_(z→z_2 )   (z−z_2 )F(z) =((z_2 ^2  +1)/(xz_2 (z_2 −z_1 ))) ⇒  f(x) =∫_1 ^(1+(√2)) F(z)dz =[aln∣z∣+bln∣z−z_1 ∣+cln∣z−z_2 ∣]_1 ^(1+(√2))   =aln(1+(√2))+bln∣1+(√2)−z_1 ∣+cln∣1+(√2)−z_2 ∣−bln∣1−z_1 ∣  −cln∣1−z_2 ∣  case 2  1−x^2 <0 ⇒x>1  f(x)=∫_1 ^(1+(√2))  ((z^2  +1)/(z(xz^2  +2z +x)))dz  F(z) =(a/z) +((bz +c)/(xz^2  +2z +x))  a =(1/x)  lim_(z→+∞)  zF(z) =(1/x) =a+(b/x) ⇒1 =ax +b ⇒b=1−ax=0 ⇒  F(z) =(1/(xz)) +(c/(xz^2  +2z +x))  F(1) =(2/((2x+2))) =(1/(x+1)) =(1/x) +(c/(2x+2)) ⇒1 =((x+1)/x) +(c/2) ⇒  (c/2) =−(1/x) ⇒c =((−2)/x) ⇒ F(z) =(1/(xz))−(2/x)(1/((xz^2  +2z +x)))  =(1/x){ (1/z)−(2/(xz^2  +2z +x))} ⇒f(x) =(1/x){ ∫_1 ^(1+(√2))  (dz/z)−2∫_1 ^(1+(√2))  (dz/(xz^2  +2z+x))}  =(1/x)ln(1+(√2))−(2/x) ∫_1 ^(1+(√2))     (dz/(xz^2  +2z +x)) =....

1)f(x)=01dt1+x1+t2changementt=sh(u)givef(x)=0ln(1+2)chu1+xchudu=0ln(1+2)eu+eu21+xeu+eu2du=0ln(1+2)eu+eu2+xeu+xeudu=eu=z11+2z+z12+xz+xz1dzz=11+2z2+1z2(2+xz+xz1)dz=11+2z2+12z2+xz3+xzdz=11+2z2+1z(xz2+2z+x)dzletdecomposeF(z)=z2+1z(xz2+2z+x)xz2+2z+x=0Δ=1x2case11x2>00<x<1z1=1+1x2xz2=11x2xF(z)=z2+1xz(zz1)(zz2)=az+bzz1+czz2a=limz0zF(z)=1xb=limzz1(zz1)F(z)=z12+1xz1(z1z2)c=limzz2(zz2)F(z)=z22+1xz2(z2z1)f(x)=11+2F(z)dz=[alnz+blnzz1+clnzz2]11+2=aln(1+2)+bln1+2z1+cln1+2z2bln1z1cln1z2case21x2<0x>1f(x)=11+2z2+1z(xz2+2z+x)dzF(z)=az+bz+cxz2+2z+xa=1xlimz+zF(z)=1x=a+bx1=ax+bb=1ax=0F(z)=1xz+cxz2+2z+xF(1)=2(2x+2)=1x+1=1x+c2x+21=x+1x+c2c2=1xc=2xF(z)=1xz2x1(xz2+2z+x)=1x{1z2xz2+2z+x}f(x)=1x{11+2dzz211+2dzxz2+2z+x}=1xln(1+2)2x11+2dzxz2+2z+x=....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com