Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66062 by mathmax by abdo last updated on 08/Aug/19

let f(x) =∫_0 ^1    (dt/(ch(t)+xsh(t)))  1) find a explicit form of f(x)  2) determine g(x) =∫_0 ^1   (dt/((ch(t)+xsh(t))^2 ))  3) calculate ∫_0 ^1    (dt/(ch(t)+3sh(t))) and ∫_0 ^1   (dt/({ch(t)+3sh(t)}^2 ))

letf(x)=01dtch(t)+xsh(t)1)findaexplicitformoff(x)2)determineg(x)=01dt(ch(t)+xsh(t))23)calculate01dtch(t)+3sh(t)and01dt{ch(t)+3sh(t)}2

Commented by mathmax by abdo last updated on 11/Aug/19

1) we have f(x)=∫_0 ^1  (dt/(ch(t)+xsh(t))) ⇒  f(x)=∫_0 ^1   ((2dt)/(e^t  +e^(−t)  +x(e^t −e^(−t) ))) =∫_0 ^1  ((2dt)/((1+x)e^t  +(1−x)e^(−t) ))  changement e^t =u give f(x)=∫_1 ^e   (2/((1+x)u +(1−x)u^(−1) ))(du/u)  =∫_1 ^e    ((2du)/((1+x)u^2 +(1−x))) =(2/(1+x)) ∫_1 ^e  (du/(u^2  +((1−x)/(1+x))))  case 1  ((1−x)/(1+x))>0 ⇒∣x∣<1   we do the changement u=(√((1−x)/(1+x)))z ⇒  f(x) =(2/(1+x)) ∫_(√((1+x)/(1−x))) ^(e(√((1+x)/(1−x))))     ((1+x)/(1−x)) (1/(1+z^2 )) (√((1−x)/(1+x)))dz  =(2/(1−x))((√(1−x))/(√(1+x))) [arctan(z)]_(√((1+x)/(1−x))) ^(e(√((1+x)/(1−x))))   =(2/(√(1−x^2 ))){ arctan(e(√((1+x)/(1−x))))−arctan((√((1+x)/(1−x))))}  case 2  ((1−x)/(1−x))<0 ⇒∣x∣>1 ⇒f(x)=(2/(x+1)) ∫_1 ^e   (du/(u^2 −((√((x−1)/(x+1))))^2 ))  =_(u=(√((x−1)/(x+1)))z)     (2/(x+1)) ∫_(√((x+1)/(x−1))) ^(e(√((x+1)/(x−1))))     ((x+1)/(x−1)) (1/(z^2 −1))(√((x−1)/(x+1)))dz  =(1/(x−1))((√(x−1))/(√(x+1))) ∫_(√((x+1)/(x−1))) ^(e(√((x+1)/(x−1))))     {(1/(z−1))−(1/(z+1))}dz  =(1/(√(x^2 −1)))[ln∣((z−1)/(z+1))∣]_(√((x+1)/(x−1))) ^(e(√((x+1)/(x−1))))    =(1/(√(x^2 −1))){ln∣((((e(√(x+1)))/(√(x−1)))−1)/(((e(√(x+1)))/(√(x−1)))+1))∣  −ln∣((((√(x+1))/(√(x−1)))−1)/(((√(x+1))/(√(x−1)))+1))∣} ⇒  f(x)=(1/(√(x^2 −1))){ln∣((e(√(x+1))−(√(x−1)))/(e(√(x+1))+(√(x−1))))∣−ln∣(((√(x+1))−(√(x−1)))/((√(x+1))+(√(x−1))))∣}

1)wehavef(x)=01dtch(t)+xsh(t)f(x)=012dtet+et+x(etet)=012dt(1+x)et+(1x)etchangementet=ugivef(x)=1e2(1+x)u+(1x)u1duu=1e2du(1+x)u2+(1x)=21+x1eduu2+1x1+xcase11x1+x>0⇒∣x∣<1wedothechangementu=1x1+xzf(x)=21+x1+x1xe1+x1x1+x1x11+z21x1+xdz=21x1x1+x[arctan(z)]1+x1xe1+x1x=21x2{arctan(e1+x1x)arctan(1+x1x)}case21x1x<0⇒∣x∣>1f(x)=2x+11eduu2(x1x+1)2=u=x1x+1z2x+1x+1x1ex+1x1x+1x11z21x1x+1dz=1x1x1x+1x+1x1ex+1x1{1z11z+1}dz=1x21[lnz1z+1]x+1x1ex+1x1=1x21{lnex+1x11ex+1x1+1lnx+1x11x+1x1+1}f(x)=1x21{lnex+1x1ex+1+x1lnx+1x1x+1+x1}

Commented by mathmax by abdo last updated on 11/Aug/19

2) sorry g(x) =∫_0 ^1  ((sh(t)dt)/((ch(t)+xsh(t))^2 ))  we have f^′ (x)=−∫_1 ^1   ((sh(t))/((ch(t)+xsh(t))^2 )) =−g(x) ⇒  g(x)=−f^′ (x) rest to calculate f^′ (x)

2)sorryg(x)=01sh(t)dt(ch(t)+xsh(t))2wehavef(x)=11sh(t)(ch(t)+xsh(t))2=g(x)g(x)=f(x)resttocalculatef(x)

Commented by mathmax by abdo last updated on 11/Aug/19

3) ∫_0 ^1    (dt/(ch(t)+3sh(t))) =f(3)=(1/(2(√2))){ln(((2e−(√2))/(2e+(√2))))−ln(((2−(√2))/(2+(√2))))}

3)01dtch(t)+3sh(t)=f(3)=122{ln(2e22e+2)ln(222+2)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com