Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38464 by maxmathsup by imad last updated on 25/Jun/18

let f(x)= ∫_0 ^1   ((ln(1−x^2 t^2 ))/t^2 )dt  with ∣x∣<1  find  f(x) at a simple form .

letf(x)=01ln(1x2t2)t2dtwithx∣<1findf(x)atasimpleform.

Commented by abdo.msup.com last updated on 01/Jul/18

we have ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞ u^n   ⇒ln(1−u) =−Σ_(n=0) ^∞ (u_(n+1) /(n+1)) =−Σ_(n=1) ^∞ (u^n /n)  ⇒ln(1−x^2 t^2 )=−Σ_(n=1) ^∞  ((x^(2n) t^(2n) )/n)  ⇒((ln(1−x^2 t^2 ))/t^2 ) =−Σ_(n=1) ^∞  ((x^(2n) t^(2n−2) )/n) ⇒  f(x)=−∫_0 ^1 {Σ_(n=1) ^∞  ((x^(2n) t^(2n−2) )/n)}dt  =−Σ_(n=1) ^∞  (x^(2n) /n) ∫_0 ^1   t^(2n−2) dt  =−Σ_(n=1) ^∞    (x^(2n) /(n(2n−1))) ⇒  ((f(x))/2) =−Σ_(n=1) ^∞  (x^(2n) /(2n(2n−1)))  =−Σ_(n=1) ^∞  ( (1/(2n−1)) −(1/(2n)))x^(2n)   =Σ_(n=1) ^∞   (x^(2n) /(2n)) −Σ_(n=1) ^∞  (x^(2n) /(2n−1)) but  Σ_(n=1) ^∞  (x^(2n) /(2n)) =−(1/2)ln(1−x^2 )  let w(x)=Σ_(n=1) ^∞  (x^(2n) /(2n−1))  w(x)=x Σ_(n=1) ^∞  (x^(2n−1) /(2n−1)) =xϕ(x)  ϕ^′ (x) =Σ_(n=1) ^∞   x^(2n−2) =Σ_(n=1) ^∞ (x^2 )^(n−1)   =Σ_(n=0) ^∞  (x^2 )^n  =(1/(1−x^2 )) ⇒ϕ(x)=∫ (dx/(1−x^2 )) +c  =(1/2)∫  ( (1/(1+x)) +(1/(1−x)))dx +c  =(1/2)ln∣((1+x)/(1−x))∣ +c  but c=ϕ(0) ⇒  w(x)=(x/2)ln∣((1+x)/(1−x))∣⇒  ((f(x))/2) =−(1/2)ln(1−x^2 )−(x/2)ln∣((1+x)/(1−x))∣ ⇒  f(x)=−ln(1−x^2 )−(x/2)ln∣((1+x)/(1−x))∣ .

wehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnln(1x2t2)=n=1x2nt2nnln(1x2t2)t2=n=1x2nt2n2nf(x)=01{n=1x2nt2n2n}dt=n=1x2nn01t2n2dt=n=1x2nn(2n1)f(x)2=n=1x2n2n(2n1)=n=1(12n112n)x2n=n=1x2n2nn=1x2n2n1butn=1x2n2n=12ln(1x2)letw(x)=n=1x2n2n1w(x)=xn=1x2n12n1=xφ(x)φ(x)=n=1x2n2=n=1(x2)n1=n=0(x2)n=11x2φ(x)=dx1x2+c=12(11+x+11x)dx+c=12ln1+x1x+cbutc=φ(0)w(x)=x2ln1+x1x∣⇒f(x)2=12ln(1x2)x2ln1+x1xf(x)=ln(1x2)x2ln1+x1x.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com