Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64677 by mathmax by abdo last updated on 20/Jul/19

let f(x) =∫_0 ^1 lnt ln(1−xt)dt   with ∣x∣<1  1)determine a explicit form for f(x)  2) find also g(x) =∫_0 ^1  ((tlnt)/(1−xt))dt  3) give f^((n)) (x) at form of integral  4) calculate ∫_0 ^1 ln(t)ln(1−t)dt  and ∫_0 ^1  ln(t)ln(2−t)dt  5) calculate ∫_0 ^1  ((tln(t))/(2−t)) dt .

letf(x)=01lntln(1xt)dtwithx∣<11)determineaexplicitformforf(x)2)findalsog(x)=01tlnt1xtdt3)givef(n)(x)atformofintegral4)calculate01ln(t)ln(1t)dtand01ln(t)ln(2t)dt5)calculate01tln(t)2tdt.

Commented by mathmax by abdo last updated on 21/Jul/19

1) f(x) =∫_0 ^1 lntln(1−xt)dt  case 1  0<x<1  changement xt =u  give f(x) =∫_0 ^x ln((u/x))ln(1−u)(du/x) =(1/x) ∫_0 ^x (lnu−lnx)ln(1−u)du  =(1/x) ∫_0 ^x ln(u)ln(1−u)du−((lnx)/x) ∫_0 ^x  ln(1−u)du  ∫_0 ^x ln(1−u)du =_(1−u =z)    ∫_1 ^(1−x) ln(z)(−dz)=∫_(1−x) ^1 ln(z)dz  [zlnz−z]_(1−x) ^1  =−1−((1−x)ln(1−x)−(1−x))  =−1−(1−x)ln(1−x) +1−x =−x−(1−x)ln(1−x)  also we have ln^′ (1−u) =((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n   ⇒  ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  (c=0) =−Σ_(n=1) ^∞   (u^n /n) ⇒  ∫_0 ^x ln(u)ln(1−u)du =−∫_0 ^x ln(u)Σ_(n=1) ^∞  (u^n /n) du  =−Σ_(n=1) ^∞  (1/n) ∫_0 ^x  u^n lnu du   by parts  f^′  =u^n  and g =lnu ⇒  w_n =∫_0 ^x u^n ln(u)du =[(1/(n+1))u^(n+1) lnu]_0 ^x  −∫_0 ^x  (u^(n+1) /(n+1)) (du/u)  =((lnx)/(n+1))x^(n+1)  −(1/(n+1)) ∫_0 ^x  u^n  du =((lnx)/(n+1))x^(n+1)  −(1/(n+1))[(u^(n+1) /(n+1))]_0 ^x   =((lnx)/(n+1))x^(n+1)  −(x^(n+1) /((n+1)^2 )) ⇒  ∫_0 ^x ln(u)ln(1−u)du =−Σ_(n=1) ^∞  (1/n){((lnx)/(n+1))x^(n+1) −(x^(n+1) /((n+1)^2 ))}  =−lnx Σ_(n=1) ^∞   (x^(n+1) /(n(n+1))) +Σ_(n=1) ^∞  (x^(n+1) /(n(n+1)^2 )) ⇒  f(x) =−lnx Σ_(n=1) ^∞  (x^n /(n(n+1))) +Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) −((lnx)/x)(−x−(1−x)ln(1−x))  f(x) =−lnxΣ_(n=1) ^∞  (x^n /(n(n+1))) +Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) +lnx( 1+(1−x)ln(1−x)).

1)f(x)=01lntln(1xt)dtcase10<x<1changementxt=ugivef(x)=0xln(ux)ln(1u)dux=1x0x(lnulnx)ln(1u)du=1x0xln(u)ln(1u)dulnxx0xln(1u)du0xln(1u)du=1u=z11xln(z)(dz)=1x1ln(z)dz[zlnzz]1x1=1((1x)ln(1x)(1x))=1(1x)ln(1x)+1x=x(1x)ln(1x)alsowehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c(c=0)=n=1unn0xln(u)ln(1u)du=0xln(u)n=1unndu=n=11n0xunlnudubypartsf=unandg=lnuwn=0xunln(u)du=[1n+1un+1lnu]0x0xun+1n+1duu=lnxn+1xn+11n+10xundu=lnxn+1xn+11n+1[un+1n+1]0x=lnxn+1xn+1xn+1(n+1)20xln(u)ln(1u)du=n=11n{lnxn+1xn+1xn+1(n+1)2}=lnxn=1xn+1n(n+1)+n=1xn+1n(n+1)2f(x)=lnxn=1xnn(n+1)+n=1xnn(n+1)2lnxx(x(1x)ln(1x))f(x)=lnxn=1xnn(n+1)+n=1xnn(n+1)2+lnx(1+(1x)ln(1x)).

Commented by mathmax by abdo last updated on 21/Jul/19

we have Σ_(n=1) ^∞  (x^n /(n(n+1))) =Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))x^n   =Σ_(n=1) ^∞  (x^n /n) −Σ_(n=1) ^∞  (x^n /(n+1)) =−ln(1−x)−Σ_(n=2) ^∞  (x^(n−1) /n)  =−ln(1−x)−(1/x)( Σ_(n=1) ^∞  (x^n /n)  −x)  =−ln(1−x)+(1/x)ln(1−x) +1 =((1/x)−1)ln(1−x) +1  let   decompose  F(t) =(1/(t(t+1)^2 ))  ⇒F(t) =(a/t) +(b/(t+1)) +(c/((t+1)^2 ))  a =lim_(t→0)  tF(t) =1  c =lim_(t→−1) (t+1)^2  F(t) =−1 ⇒F(t) =(1/t) +(b/(t+1)) −(1/((t+1)^2 ))  lim_(t→+∞)  tF(t) =0 =a+b ⇒b=−1 ⇒ F(t) =(1/t)−(1/(t+1)) −(1/((t+1)^2 )) ⇒  Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) =Σ_(n=1) ^∞  (x^n /n) −Σ_(n=1) ^∞  (x^n /(n+1)) −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))  =−ln(1−x)−Σ_(n=2) ^∞  (x^(n−1) /n) −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))  =−ln(1−x)−(1/x) {Σ_(n=1) ^∞  (x^n /n)−1} −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))  =−ln(1−x)+((ln(1−x))/x) +(1/x) −Σ_(n=1) ^∞  (x^n /((n+1)^2 ))

wehaven=1xnn(n+1)=n=1(1n1n+1)xn=n=1xnnn=1xnn+1=ln(1x)n=2xn1n=ln(1x)1x(n=1xnnx)=ln(1x)+1xln(1x)+1=(1x1)ln(1x)+1letdecomposeF(t)=1t(t+1)2F(t)=at+bt+1+c(t+1)2a=limt0tF(t)=1c=limt1(t+1)2F(t)=1F(t)=1t+bt+11(t+1)2limt+tF(t)=0=a+bb=1F(t)=1t1t+11(t+1)2n=1xnn(n+1)2=n=1xnnn=1xnn+1n=1xn(n+1)2=ln(1x)n=2xn1nn=1xn(n+1)2=ln(1x)1x{n=1xnn1}n=1xn(n+1)2=ln(1x)+ln(1x)x+1xn=1xn(n+1)2

Commented by mathmax by abdo last updated on 21/Jul/19

Σ_(n=1) ^∞  (x^n /(n(n+1)^2 )) =−ln(1−x)+((ln(1−x))/x) +1 −Σ_(n=1) ^∞  (x^n /((n+1)^2 )) ⇒  f(x) =

n=1xnn(n+1)2=ln(1x)+ln(1x)x+1n=1xn(n+1)2f(x)=

Commented by mathmax by abdo last updated on 22/Jul/19

2) we have f^′ (x) =∫_0 ^1 ((−t)/(1−xt))lnt dt =−∫_0 ^1  ((tlnt)/(1−xt))dt =−g(x) ⇒  g(x)=−f^′ (x)  the function f is known  rest to calculate f^′ (x)  3) we have f^′ (x) =∫_0 ^1  ((tlnt)/(xt−1)) dt =∫_0 ^1    ((lnt)/(x−(1/t))) dt ⇒  f^((n)) (x) =∫_0 ^1 ((1/(x−(1/t))))^((n−1)) lntdt =∫_0 ^1   (((−1)^(n−1) (n−1)!)/((x−(1/t))^n ))lntdt  f^((n)) (x)=(−1)^(n−1) (n−1)! ∫_0 ^1    ((t^n lnt)/((xt−1)^n ))dt

2)wehavef(x)=01t1xtlntdt=01tlnt1xtdt=g(x)g(x)=f(x)thefunctionfisknownresttocalculatef(x)3)wehavef(x)=01tlntxt1dt=01lntx1tdtf(n)(x)=01(1x1t)(n1)lntdt=01(1)n1(n1)!(x1t)nlntdtf(n)(x)=(1)n1(n1)!01tnlnt(xt1)ndt

Terms of Service

Privacy Policy

Contact: info@tinkutara.com