Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66801 by mathmax by abdo last updated on 19/Aug/19

let f(x) =∫_0 ^2 (√(x+t^2 ))dt   with x≥0  1) calculate f(x)  2)calculate g(x) =∫_0 ^2  (dt/(√(x+t^2 )))  3)find the value[of ∫_0 ^2 (√(4+t^2 ))dt and ∫_0 ^2 (dt/(√(3+t^2 )))  4) give g^′ (x) at form of integral.

letf(x)=02x+t2dtwithx01)calculatef(x)2)calculateg(x)=02dtx+t23)findthevalue[of024+t2dtand02dt3+t24)giveg(x)atformofintegral.

Commented by mathmax by abdo last updated on 21/Aug/19

1) f(x)=∫_0 ^2 (√(x+t^2 ))dt   changement t =(√x)u give   f(x)=∫_0 ^(2/(√x))   (√x)(√(1+u^2 ))(√x)du =x ∫_0 ^(2/(√x)) (√(1+u^2 ))du  changement u=shz  give f(x) =x ∫_0 ^(argsh((2/(√x)))) ch(z)ch(z)ez =(x/2) ∫_0 ^(argsh((2/((√)x)))) (ch(2z)+1)dz  =(x/4)[sh(2z)]_0 ^(ln((2/(√x))+(√(1+(4/x)))))  +(x/2)ln((2/(√x))+(√(1+(4/x))))  =(x/8)[e^(2z) −e^(−2z) ]_0 ^(ln(((2+(√(x+4)))/((√x) ))))  +(x/2)ln(((2+(√(x+4)))/(√x))) ⇒  f(x)=(x/8){(((2+(√(x+4)))/(√x)))^2 −(1/((((2+(√(x+4)))/(√x)))^2 ))}+(x/2)ln(((2+(√(x+4)))/(√x)))  2)we have f^′ (x)= ∫_0 ^2 (1/(2(√(x+t^2 )))) dt =(1/2)g(x) ⇒g(x) =2f^′ (x)  rest to calculate f^′ (x) ..be continued...

1)f(x)=02x+t2dtchangementt=xugivef(x)=02xx1+u2xdu=x02x1+u2duchangementu=shzgivef(x)=x0argsh(2x)ch(z)ch(z)ez=x20argsh(2x)(ch(2z)+1)dz=x4[sh(2z)]0ln(2x+1+4x)+x2ln(2x+1+4x)=x8[e2ze2z]0ln(2+x+4x)+x2ln(2+x+4x)f(x)=x8{(2+x+4x)21(2+x+4x)2}+x2ln(2+x+4x)2)wehavef(x)=0212x+t2dt=12g(x)g(x)=2f(x)resttocalculatef(x)..becontinued...

Commented by mathmax by abdo last updated on 21/Aug/19

3) we have ∫_0 ^2 (√(4+t^2 ))dt =f(4) =(1/2){(((2+2(√2))/2))^2 −(1/((((2+2(√2))/2))^2 ))  +2ln(((2+2(√2))/2)) =(1/2){ (1+(√2))^2 −(1/((1+(√2))^2 ))} +2ln(1+(√2))  ∫_0 ^2   (dt/(√(3+t^2 ))) =_(t=(√3)u)     ∫_0 ^(2/(√3))     (((√3)du)/((√3)(√(1+u^2 )))) =∫_0 ^(2/(√3))    (du/(√(1+u^2 )))  =[ln(u+(√(1+u^2 )))]_0 ^(2/(√3))   =ln((2/(√3)) +(√(1+(4/3)))) =ln(((2+(√7))/(√3)))

3)wehave024+t2dt=f(4)=12{(2+222)21(2+222)2+2ln(2+222)=12{(1+2)21(1+2)2}+2ln(1+2)02dt3+t2=t=3u0233du31+u2=023du1+u2=[ln(u+1+u2)]023=ln(23+1+43)=ln(2+73)

Commented by mathmax by abdo last updated on 21/Aug/19

4) we have g(x) =∫_0 ^2 (x+t^2 )^(−(1/2))  dt ⇒g^′ (x) =∫_0 ^2 −(1/2)(x+t^2 )^(−(3/2)) dt  =−(1/2) ∫_0 ^2  (dt/((x+t^2 )(√(x+t^2 )))) .

4)wehaveg(x)=02(x+t2)12dtg(x)=0212(x+t2)32dt=1202dt(x+t2)x+t2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com