Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 46851 by maxmathsup by imad last updated on 01/Nov/18

let f(x)=∫_0 ^(2π)   ((sint)/(x +sint))dt  withx>1  1) calculate f(x)  2) calculate ∫_0 ^(2π)    ((sint)/((x+sint)^2 ))dt  3)find the value of ∫_0 ^(2π)   ((sint)/(2+sint))dt and ∫_0 ^(2π)   ((sint)/((2+sint)^2 ))dt

letf(x)=02πsintx+sintdtwithx>11)calculatef(x)2)calculate02πsint(x+sint)2dt3)findthevalueof02πsint2+sintdtand02πsint(2+sint)2dt

Commented by maxmathsup by imad last updated on 02/Nov/18

1) we have f(x)=∫_0 ^(2π)  ((x+sint −x)/(x+sint)) dt =2π −x ∫_0 ^(2π)   (dt/(x+sint))  changement e^(it) =z give  ∫_0 ^(2π)   (dt/(x+sint)) =∫_(∣z∣=1)   (1/(x+((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)  ((2idz)/(iz(2ix +z−z^(−1) ))) = ∫_(∣z∣=1)  ((2idz)/(−2xz+iz^2  −i)) =∫_(∣z∣=1)  ((2dz)/(2ixz+z^2 −1))  =∫_(∣z∣=1)  ((2dz)/(z^2  +2ixz −1))  let ϕ(z)=(2/(z^2  +2ixz −1)) poles of ϕ?  Δ^′  =(ix)^2  +1 =1−x^2  =(i(√(x^2 −1)))^2  ⇒z_1 =−ix+i(√(x^2 −1))  z_2 =−ix−i(√(x^2 −1))  ∣z_1 ∣−1 =∣−x+(√(x^2 −1))∣−1 =(√(x^2 −1))−x−1=(√(x^2 −1))−(x+1)  and x^2 −1−(x+1)^2  =x^2 −1−x^2 −2x−1 =−2x−2<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =∣x+(√(x^2 −1))∣−1 =x−1+(√(x^2 −1))>0 because x>1  ⇒z_2 is out of circle  so ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 ) but ϕ(z) =(2/((z−z_1 )(z−z_2 ))) ⇒  Res(ϕ,z_1 ) =lim_(z→z_1 ) (z−z_1 )ϕ(z) =(2/(z_1 −z_2 )) =(2/(2i(√(x^2 −1)))) ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ (1/(i(√(x^2 −1)))) =((2π)/(√(x^2 −1))) ⇒ ★f(x)=((2π)/(√(x^2 −1))) ★  with x>1

1)wehavef(x)=02πx+sintxx+sintdt=2πx02πdtx+sintchangementeit=zgive02πdtx+sint=z∣=11x+zz12idziz=z∣=12idziz(2ix+zz1)=z∣=12idz2xz+iz2i=z∣=12dz2ixz+z21=z∣=12dzz2+2ixz1letφ(z)=2z2+2ixz1polesofφ?Δ=(ix)2+1=1x2=(ix21)2z1=ix+ix21z2=ixix21z11=∣x+x211=x21x1=x21(x+1)andx21(x+1)2=x21x22x1=2x2<0⇒∣z1∣<1z21=∣x+x211=x1+x21>0becausex>1z2isoutofcirclesoz∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=2(zz1)(zz2)Res(φ,z1)=limzz1(zz1)φ(z)=2z1z2=22ix21z∣=1φ(z)dz=2iπ1ix21=2πx21f(x)=2πx21withx>1

Commented by maxmathsup by imad last updated on 02/Nov/18

2) we have f^′ (x) =∫_0 ^(2π)  (∂/∂x){ ((sint)/(x+sint))}dt =−∫_0 ^(2π)   ((sint)/((x+sint)^2 ))dt ⇒  ∫_0 ^(2π)   ((sint)/((x+sint)^2 ))dt =−f^′ (x) but f(x) =((2π)/(√(x^2 −1))) =2π(x^2 −1)^(−(1/2))  ⇒  f^′ (x) =2π(−(1/2))(2x)(x^2 −1)^(−(3/2))  =((−2πx)/((x^2 −1)^(3/2) )) =((−2πx)/((x^2 −1)(√(x^2 −1)))) ⇒  ∫_0 ^(2π)  ((sint)/((x+sint)^2 )) dt =((2πx)/((x^2 −1)(√(x^2 −1))))  with x>1 .

2)wehavef(x)=02πx{sintx+sint}dt=02πsint(x+sint)2dt02πsint(x+sint)2dt=f(x)butf(x)=2πx21=2π(x21)12f(x)=2π(12)(2x)(x21)32=2πx(x21)32=2πx(x21)x2102πsint(x+sint)2dt=2πx(x21)x21withx>1.

Commented by maxmathsup by imad last updated on 02/Nov/18

3) we have ∫_0 ^(2π)   ((sint)/(2+sint)) dt =f(2) =((2π)/(√(2^2 −1))) =((2π)/(√3))  ∫_0 ^(2π)   ((sint)/((2+sint)^2 ))dt =f^′ (2) =((4π)/((2^2 −1)(√(2^2 −1)))) =((4π)/(3(√3))) .

3)wehave02πsint2+sintdt=f(2)=2π221=2π302πsint(2+sint)2dt=f(2)=4π(221)221=4π33.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com