Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 57899 by maxmathsup by imad last updated on 13/Apr/19

let f(x) =∫_0 ^(+∞)   (dt/((t^2  +x^2 )^3 ))  with x>0  1) find a explicit form off (x)  1) calculate ∫_0 ^∞     (dx/((t^2  +3)^3 ))  and ∫_0 ^∞     (dt/((t^2  +4)^3 ))  2) find the value of A(θ) =∫_0 ^∞     (dt/((t^2  +sin^2 θ)^3 ))  with 0<θ<π.

letf(x)=0+dt(t2+x2)3withx>01)findaexplicitformoff(x)1)calculate0dx(t2+3)3and0dt(t2+4)32)findthevalueofA(θ)=0dt(t2+sin2θ)3with0<θ<π.

Commented by maxmathsup by imad last updated on 17/Apr/19

1) we have  f(x)=(1/2) ∫_(−∞) ^(+∞)    (dt/((t^2  +x^2 )^3 ))  let consider the complex function  ϕ(z) =(1/((z^2  +x^2 )^3 ))  poles of ϕ?  we have ϕ(z) =(1/((z−ix)^3 (z+ix)^3 ))  so  the poles of are +^− ix (triples) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ix)  Res(ϕ,ix) =lim_(z→ix)    (1/((3−1)!)){ (z−ix)^3 ϕ(z)}^((2))   =lim_(z→ix)     (1/2){  (1/((z+ix)^3 ))}^((2))   we have   {(1/((z+ix)^3 ))}^((1))  =−((3(z+ix)^2 )/((z+ix)^6 )) =−(3/((z+ix)^4 )) ⇒{(1/((z+ix)^3 ))}^((2))   =−3 ((−4(z+ix)^3 )/((z+ix)^8 )) =((12)/((z+ix)^5 )) ⇒Res(ϕ,ix) =lim_(z→ix)     (6/((z+ix)^5 ))  =(6/((2ix)^5 )) =(6/(2^5 x^5 i)) =(6/(32ix^5 )) =(3/(16ix^5 )) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (3/(16 x^5 i)) =((3π)/(8 x^5 )) ⇒  f(x) =((3π)/(16 x^5 ))   (  with x>0)  2) ∫_0 ^∞    (dt/((t^2  +3)^3 )) =f((√3)) = ((3π)/(16 ((√3))^5 )) =((3π)/(16 ((√3))^4 (√3))) =((3π)/(9×16 (√3)))  ∫_0 ^∞      (dt/((t^2  +4)^3 )) =f(2) =((3π)/(16 (2)^5 )) =((3π)/(16×32))

1)wehavef(x)=12+dt(t2+x2)3letconsiderthecomplexfunctionφ(z)=1(z2+x2)3polesofφ?wehaveφ(z)=1(zix)3(z+ix)3sothepolesofare+ix(triples)+φ(z)dz=2iπRes(φ,ix)Res(φ,ix)=limzix1(31)!{(zix)3φ(z)}(2)=limzix12{1(z+ix)3}(2)wehave{1(z+ix)3}(1)=3(z+ix)2(z+ix)6=3(z+ix)4{1(z+ix)3}(2)=34(z+ix)3(z+ix)8=12(z+ix)5Res(φ,ix)=limzix6(z+ix)5=6(2ix)5=625x5i=632ix5=316ix5+φ(z)dz=2iπ316x5i=3π8x5f(x)=3π16x5(withx>0)2)0dt(t2+3)3=f(3)=3π16(3)5=3π16(3)43=3π9×1630dt(t2+4)3=f(2)=3π16(2)5=3π16×32

Commented by maxmathsup by imad last updated on 17/Apr/19

3)  ∫_0 ^∞     (dt/((t^2  +sin^2 θ)^3 )) =f(sinθ) =((3π)/(16 sin^5 θ))

3)0dt(t2+sin2θ)3=f(sinθ)=3π16sin5θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com