Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67008 by mathmax by abdo last updated on 21/Aug/19

let f(x) =∫_0 ^∞     (dt/((x^2  +t^2 )^2 ))  with x>0  1) find a explicit form of (x)  2)find also g(x) =∫_0 ^∞    (dt/((x^2  +t^2 )^3 ))  3)find the values of integrals ∫_0 ^∞    (dt/((t^2  +3)^2 )) and ∫_0 ^∞   (dt/((t^2  +3)^3 ))  4) calculate U_θ =∫_0 ^∞    (dt/((t^2  +cos^2 θ)^2 ))   with 0<θ<(π/2)  5) find f^((n)) (x) and f^((n)) (0)  6) developp f at integr serie

letf(x)=0dt(x2+t2)2withx>01)findaexplicitformof(x)2)findalsog(x)=0dt(x2+t2)33)findthevaluesofintegrals0dt(t2+3)2and0dt(t2+3)34)calculateUθ=0dt(t2+cos2θ)2with0<θ<π25)findf(n)(x)andf(n)(0)6)developpfatintegrserie

Commented by mathmax by abdo last updated on 25/Aug/19

1) f(x) =∫_0 ^∞    (dt/((x^2  +t^2 )^2 )) ⇒2f(x) =∫_(−∞) ^(+∞)  (dt/((t^2  +x^2 )^2 ))  let  =_(t=xz)    ∫_(−∞) ^(+∞)      ((xdz)/(x^4 (z^2  +1)^2 )) =(1/x^3 ) ∫_(−∞) ^(+∞)   (dz/((z^2  +1)^2 ))  let ϕ(z)=(1/((z^2  +1)^2 ))  we have ϕ(z) =(1/((z−i)^2 (z+i)^2 ))  resi_ dus tbeorem hive  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) {(z−i)^2 ϕ(z)}^((1))  =lim_(z→i)   {(z+i)^(−2) }^((1))   =lim_(z→i)   −2(z+i)^(−3)  =−2(2i)^(−3)  =((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i)) ⇒  ∫_(−∞) ^(+∞ ) ϕ(z)dz =2iπ×(1/(4i)) =(π/2) ⇒2f(x)=(π/(2x^3 )) ⇒f(x) =(π/(4x^3 ))     (x>0)  2) we have f^′ (x) =−∫_0 ^∞    ((2(2x)(x^(2 ) +t^2 ))/((x^2  +t^2 )^4 ))dx =−4x ∫_0 ^∞    (dx/((x^2  +t^2 )^3 ))  =−4x g(x) ⇒g(x) =−(1/(4x))f^′ (x)  f^′ (x) =(π/4)(x^(−3) )^′  =(π/4)(−3)x^(−4)  =((−3π)/(4x^4 )) ⇒  g(x) =−(1/(4x))×((−3π)/(4x^4 )) =((3π)/(16x^5 ))

1)f(x)=0dt(x2+t2)22f(x)=+dt(t2+x2)2let=t=xz+xdzx4(z2+1)2=1x3+dz(z2+1)2letφ(z)=1(z2+1)2wehaveφ(z)=1(zi)2(z+i)2residustbeoremhive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi{(zi)2φ(z)}(1)=limzi{(z+i)2}(1)=limzi2(z+i)3=2(2i)3=2(2i)3=28i=14i+φ(z)dz=2iπ×14i=π22f(x)=π2x3f(x)=π4x3(x>0)2)wehavef(x)=02(2x)(x2+t2)(x2+t2)4dx=4x0dx(x2+t2)3=4xg(x)g(x)=14xf(x)f(x)=π4(x3)=π4(3)x4=3π4x4g(x)=14x×3π4x4=3π16x5

Commented by mathmax by abdo last updated on 25/Aug/19

3) ∫_0 ^∞    (dt/((t^2  +3)^2 )) =f((√3)) =(π/(4((√3))^3 )) =(π/(12(√3))) =((π(√3))/(36))  ∫_0 ^∞     (dt/((t^2  +3)^3 )) =g((√3)) =((3π)/(16((√3))^5 )) =((3π)/(16×9×(√3))) =(π/(48(√3))) =((π(√3))/(144))

3)0dt(t2+3)2=f(3)=π4(3)3=π123=π3360dt(t2+3)3=g(3)=3π16(3)5=3π16×9×3=π483=π3144

Terms of Service

Privacy Policy

Contact: info@tinkutara.com