All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67008 by mathmax by abdo last updated on 21/Aug/19
letf(x)=∫0∞dt(x2+t2)2withx>01)findaexplicitformof(x)2)findalsog(x)=∫0∞dt(x2+t2)33)findthevaluesofintegrals∫0∞dt(t2+3)2and∫0∞dt(t2+3)34)calculateUθ=∫0∞dt(t2+cos2θ)2with0<θ<π25)findf(n)(x)andf(n)(0)6)developpfatintegrserie
Commented by mathmax by abdo last updated on 25/Aug/19
1)f(x)=∫0∞dt(x2+t2)2⇒2f(x)=∫−∞+∞dt(t2+x2)2let=t=xz∫−∞+∞xdzx4(z2+1)2=1x3∫−∞+∞dz(z2+1)2letφ(z)=1(z2+1)2wehaveφ(z)=1(z−i)2(z+i)2residustbeoremhive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i{(z−i)2φ(z)}(1)=limz→i{(z+i)−2}(1)=limz→i−2(z+i)−3=−2(2i)−3=−2(2i)3=−2−8i=14i⇒∫−∞+∞φ(z)dz=2iπ×14i=π2⇒2f(x)=π2x3⇒f(x)=π4x3(x>0)2)wehavef′(x)=−∫0∞2(2x)(x2+t2)(x2+t2)4dx=−4x∫0∞dx(x2+t2)3=−4xg(x)⇒g(x)=−14xf′(x)f′(x)=π4(x−3)′=π4(−3)x−4=−3π4x4⇒g(x)=−14x×−3π4x4=3π16x5
3)∫0∞dt(t2+3)2=f(3)=π4(3)3=π123=π336∫0∞dt(t2+3)3=g(3)=3π16(3)5=3π16×9×3=π483=π3144
Terms of Service
Privacy Policy
Contact: info@tinkutara.com