All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65061 by mathmax by abdo last updated on 24/Jul/19
letf(x)=∫0∞dt(x−t+t2)3withx>141)calculatef(x)2)calculatealsog(x)=∫0∞dt(x−t+t2)43)findthevaluesof∫0∞dt(1−t+t2)3and∫0∞dt(2−t+t2)4
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
t2−t+x=(t−12)2+4x−14=4x−14[(2t−14x−1)2+1]causex>14⇒4x−1>0f(x)=(44x−1)3∫0∞dt[(2t−14x−1)2+1]3letchangeu=arctan(2t−14x−1)thendu=24x−1(2t−14x−1)2+1dtift=0thenu=arctan(−14x−1)=−π2+arctan(4x−1)=θ0whent=∞u=π2Thenf(x)=(44x−1)3.24x−1∫θ0π2du[tan2u+1]2=(44x−1)72.∫θ0π2cos4uduitiseasytoprovethat{cos4u−sin4u=cos2ucos4u+sin4u=1−sin2u2thenwegotcos4u=12−sin2u4+cos2u2Sof(x)=(44x−1)72.[u2+cos2u8+sin2u4]θ0π2knowingthat{sin2u=2tanu1+tan2ucos2u=1−tan2u1+tan2uwegotf(x)=(44x−1)72.[π4−18−(arctan4x−12−π4+18.1−14x−11+14x−1+14.2.−14x−11+14x−1)]f(x)=(44x−1)72.[π2−14−arctan4x−12−2x−1−24x−116x]2)dfdx=∫0∞d(1[x−t+t2]3)dxdt=−3g(x)sog(x)=−13dfdx.3)byreplacingx=1onthefinalexpressionoff(x)wegotf(1)=(43)72[π2−14−π3×2−1−2316]f(2)=(47)72.[π2−14−arctan72−3−2716]
Commented by mathmax by abdo last updated on 25/Jul/19
thankyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com