Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65061 by mathmax by abdo last updated on 24/Jul/19

let f(x) =∫_0 ^∞    (dt/((x−t +t^2 )^3 ))  with   x>(1/4)  1) calculate f(x)  2) calculate also  g(x) =∫_0 ^∞      (dt/((x−t+t^2 )^4 ))  3)find the values of ∫_0 ^∞    (dt/((1−t+t^2 )^3 ))  and ∫_0 ^∞   (dt/((2−t+t^2 )^4 ))

letf(x)=0dt(xt+t2)3withx>141)calculatef(x)2)calculatealsog(x)=0dt(xt+t2)43)findthevaluesof0dt(1t+t2)3and0dt(2t+t2)4

Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19

  t^2 −t+x=(t−(1/2))^2 +((4x−1)/4)=((4x−1)/4)[(((2t−1)/(√(4x−1))))^2 +1]  cause x>(1/4) ⇒ 4x−1>0   f(x)=((4/(4x−1)))^3 ∫_0 ^∞  (dt/([(((2t−1)/(√(4x−1))) )^2 +1]^3 ))    let change u=arctan(((2t−1)/(√(4x−1))))    then   du=(((2/(√(4x−1))) )/((((2t−1)/(√(4x−1))))^2 +1))dt    if   t=0   then  u=arctan(((−1)/(√(4x−1))))=((−π)/2)+arctan((√(4x−1)))=θ_0   when t=∞   u=(π/2)  Then  f(x)= ((4/(4x−1)))^3 .(2/(√(4x−1))) ∫_θ_0  ^(π/2)   (du/([tan^2 u +1]^2 ))       =((4/(4x−1)))^(7/2) .∫_θ_0  ^(π/2) cos^4 u du      it is easy to prove     that {_(cos^4 u −sin^4 u= cos2u  ) ^(cos^4 u +sin^4 u = 1−((sin2u)/2)) then  we got  cos^4 u = (1/2)−((sin2u)/4)+((cos2u)/2)  So    f(x)= ((4/(4x−1)))^(7/2) . [(u/2) +((cos2u)/8) +((sin2u)/4) ]_θ_0  ^(π/2)     knowing that  {_(sin2u=((2tanu)/(1+tan^2 u))) ^(cos2u=((1−tan^2 u)/(1+tan^2 u)))    we  got  f(x)=((4/(4x−1)))^(7/2) .[ (π/4)−(1/8) − ( ((arctan(√(4x−1)))/2) −(π/4) +(1/8).((1−(1/(4x−1)))/(1+(1/(4x−1)))) + (1/4). ((2.((−1)/(√(4x−1))))/(1+(1/(4x−1)))) )]    f(x)=((4/(4x−1)))^(7/2) .[ (π/2)−(1/4) −((arctan(√(4x−1)))/2) −((2x−1−2(√(4x−1)))/(16x)) ]       2)   (df/dx)=∫_(0    ) ^∞  ((d((1/([x−t+t^2 ]^3 ))))/dx)dt = −3 g(x)   so  g(x)=((−1)/3) (df/(dx )).  3)  by replacing  x=1   on the final expression of f(x) we got  f(1)=((4/3))^(7/2) [(π/2)−(1/4)−(π/(3×2))−((1−2(√3))/(16))]  f(2)=((4/7))^(7/2) .[(π/2)−(1/4)−((arctan(√7))/2) −((3−2(√7))/(16))]

t2t+x=(t12)2+4x14=4x14[(2t14x1)2+1]causex>144x1>0f(x)=(44x1)30dt[(2t14x1)2+1]3letchangeu=arctan(2t14x1)thendu=24x1(2t14x1)2+1dtift=0thenu=arctan(14x1)=π2+arctan(4x1)=θ0whent=u=π2Thenf(x)=(44x1)3.24x1θ0π2du[tan2u+1]2=(44x1)72.θ0π2cos4uduitiseasytoprovethat{cos4usin4u=cos2ucos4u+sin4u=1sin2u2thenwegotcos4u=12sin2u4+cos2u2Sof(x)=(44x1)72.[u2+cos2u8+sin2u4]θ0π2knowingthat{sin2u=2tanu1+tan2ucos2u=1tan2u1+tan2uwegotf(x)=(44x1)72.[π418(arctan4x12π4+18.114x11+14x1+14.2.14x11+14x1)]f(x)=(44x1)72.[π214arctan4x122x124x116x]2)dfdx=0d(1[xt+t2]3)dxdt=3g(x)sog(x)=13dfdx.3)byreplacingx=1onthefinalexpressionoff(x)wegotf(1)=(43)72[π214π3×212316]f(2)=(47)72.[π214arctan7232716]

Commented by mathmax by abdo last updated on 25/Jul/19

thank you sir .

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com