Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40619 by math khazana by abdo last updated on 25/Jul/18

let  f(x)=∫_0 ^(π/2)    (dθ/(x  +cos^2 θ))  with x>0 .  1) calculate f(x) and f^′ (x)  2) find  f^((n)) (x) and f^((n)) (0)  3) developp f at integr serie.

letf(x)=0π2dθx+cos2θwithx>0.1)calculatef(x)andf(x)2)findf(n)(x)andf(n)(0)3)developpfatintegrserie.

Commented by abdo mathsup 649 cc last updated on 27/Jul/18

1) we have proved that f(x)=((π(√2))/(2(√x))) ⇒  f^′ (x)=((π(√2))/2)(x^(−(1/2)) )^′  =−(1/2) ((π(√2))/2) x^(−(3/2)) =−((π(√2))/(4x(√x)))  2) f^((n)) (x)=((π(√2))/2) (x^(−(1/2)) )^((n))    let find  (x^p )^((n))  with p ∈Q   (x^p )^((1)) =px^(p−1)  ,  (x^p )^((2)) =p(p−1)x^(p−2) ⇒  (x^p )^((n))  =p(p−1)...(p−n+1)x^(p−n)  ⇒  (x^(−(1/2)) )^((n)) =(−(1/2))(−(3/2))...(−(1/2)−n+1)x^(−(1/2)−n)   =(−(1/2))(−(3/2))...(((−1−2n+2)/2))x^(−(1/2)−n)   =(−(1/2))(−(3/2))....(−((2n−1)/2))(1/(x^n (√x))) ⇒  f^((n)) (x)=(π/(√2)) (−(1/2))(−(3/2))...(−((2n−1)/2)) (1/(x^n (√x)))  f^((n)) (1)=(π/(√2))(−(1/2))(−(3/2))...(−((2n−1)/2))  3) f(x) =Σ_(n=0) ^∞   ((f^((n)) (1))/(n!))(x−1)^n   = Σ_(n=0) ^∞ (π/(n!(√2)))(−(1/2))(−(3/2))...(−((2n−1)/2))(x−1)^n .

1)wehaveprovedthatf(x)=π22xf(x)=π22(x12)=12π22x32=π24xx2)f(n)(x)=π22(x12)(n)letfind(xp)(n)withpQ(xp)(1)=pxp1,(xp)(2)=p(p1)xp2(xp)(n)=p(p1)...(pn+1)xpn(x12)(n)=(12)(32)...(12n+1)x12n=(12)(32)...(12n+22)x12n=(12)(32)....(2n12)1xnxf(n)(x)=π2(12)(32)...(2n12)1xnxf(n)(1)=π2(12)(32)...(2n12)3)f(x)=n=0f(n)(1)n!(x1)n=n=0πn!2(12)(32)...(2n12)(x1)n.

Commented by abdo mathsup 649 cc last updated on 27/Jul/18

2) the Q is find f^((n)) (x) and f^((n)) (1)  3) the Q is developp f at integr serie at v(1).

2)theQisfindf(n)(x)andf(n)(1)3)theQisdeveloppfatintegrserieatv(1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com