All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40619 by math khazana by abdo last updated on 25/Jul/18
letf(x)=∫0π2dθx+cos2θwithx>0.1)calculatef(x)andf′(x)2)findf(n)(x)andf(n)(0)3)developpfatintegrserie.
Commented by abdo mathsup 649 cc last updated on 27/Jul/18
1)wehaveprovedthatf(x)=π22x⇒f′(x)=π22(x−12)′=−12π22x−32=−π24xx2)f(n)(x)=π22(x−12)(n)letfind(xp)(n)withp∈Q(xp)(1)=pxp−1,(xp)(2)=p(p−1)xp−2⇒(xp)(n)=p(p−1)...(p−n+1)xp−n⇒(x−12)(n)=(−12)(−32)...(−12−n+1)x−12−n=(−12)(−32)...(−1−2n+22)x−12−n=(−12)(−32)....(−2n−12)1xnx⇒f(n)(x)=π2(−12)(−32)...(−2n−12)1xnxf(n)(1)=π2(−12)(−32)...(−2n−12)3)f(x)=∑n=0∞f(n)(1)n!(x−1)n=∑n=0∞πn!2(−12)(−32)...(−2n−12)(x−1)n.
2)theQisfindf(n)(x)andf(n)(1)3)theQisdeveloppfatintegrserieatv(1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com