Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51997 by maxmathsup by imad last updated on 01/Jan/19

let f(x)=∫_0 ^(π/2)     (dt/(1+xsint))  with x>−1  1) calculate f(o) ,f(1) and f(2)  2) give f at form of function

letf(x)=0π2dt1+xsintwithx>11)calculatef(o),f(1)andf(2)2)givefatformoffunction

Commented by maxmathsup by imad last updated on 02/Jan/19

1) we have f(0)=∫_0 ^(π/2) dt =(π/2)  f(1) =∫_0 ^(π/2)   (dt/(1+sint)) =_(tan((t/2))=u)    ∫_0 ^1    (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =2 ∫_0 ^1    (du/(1+u^2  +2u))  =2∫_0 ^1    (du/((u+1)^2 )) =[−(2/(u+1))]_0 ^1  =−2((1/2) −1) =−1+2 =1 ⇒f(1)=1  f(2) =∫_0 ^(π/2)    (dt/(1+2sint)) =_(tan((t/2))=u)  ∫_0 ^1    (1/(1+2((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =2 ∫_0 ^1    (du/(1+u^2  +4u)) =2 ∫_0 ^1   (du/(u^2  +4u +1))  .roots of u^2  +4u +1  Δ^′ =2^2 −1  =3 ⇒u_1 =−2+(√3)  and u_2 =−2−(√3)  f(2) =2 ∫_0 ^1  (du/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 )) ∫_0 ^1  ((1/(u−u_1 )) −(1/(u−u_2 )))du  =(2/(2(√3))) ∫_0 ^1 { (1/(u−u_1 )) −(1/(u−u_2 ))}du =(1/(√3))[ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^1 =(1/(√3)){ln∣((1−u_1 )/(1−u_2 ))∣−ln∣(u_1 /u_2 )∣}  =(1/(√3)){ln∣((3−(√3))/(3+(√3)))∣−ln∣((2−(√3))/(2+(√3)))∣ .

1)wehavef(0)=0π2dt=π2f(1)=0π2dt1+sint=tan(t2)=u0111+2u1+u22du1+u2=201du1+u2+2u=201du(u+1)2=[2u+1]01=2(121)=1+2=1f(1)=1f(2)=0π2dt1+2sint=tan(t2)=u0111+22u1+u22du1+u2=201du1+u2+4u=201duu2+4u+1.rootsofu2+4u+1Δ=221=3u1=2+3andu2=23f(2)=201du(uu1)(uu2)=2u1u201(1uu11uu2)du=22301{1uu11uu2}du=13[lnuu1uu2]01=13{ln1u11u2lnu1u2}=13{ln333+3ln232+3.

Commented by maxmathsup by imad last updated on 02/Jan/19

2)changement tan((t/2))=u give f(x)=∫_0 ^1    (1/(1+x((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =2∫_0 ^1   (du/(1+u^2  +2xu)) =2 ∫_0 ^1   (du/(u^2  +2xu +1)) let p(u)=u^2  +2xu +1  Δ^′ =x^2 −1  case1  Δ^′ >0 ⇔∣x∣>1  ⇒u_1 =−x+(√(x^2 −1)) and u_2 =−x−(√(x^2 −1))  ⇒f(x)=2 ∫_0 ^1    (du/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 ))∫_0 ^1 { (1/(u−u_1 )) −(1/(u−u_2 ))}du  =(2/(2(√(1−x^2 )))) [ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^1 =(1/(√(1−x^2 ))){ln∣((1−u_1 )/(1−u_2 ))∣−ln∣(u_1 /u_2 )∣}  =(1/(√(1−x^2 ))){ln∣((1+x−(√(x^2 −1)))/(1+x+(√(x^2 −1))))∣−ln∣((x−(√(x^2 −1)))/(x+(√(x^2 −1))))∣}  case2  Δ^′ <0 ⇔∣x∣<1 ⇒p(u)=u^2  +2xu +x^2  +1−x^2 =(u+x)^2 +1−x^2   we do the changement u+x=(√(1−x^2 ))α ⇒  f(x) =2 ∫_0 ^1  (du/((u+x)^2  +1−x^2 )) =2 ∫_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))      (((√(1−x^2 ))dα)/((1−x^2 )(1+α^2 )))  = (2/(√(1−x^2 ))) [arctan(α)]_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))   =(2/(√(1−x^2 ))) { arctan((√((1+x)/(1−x))))−arctan((x/(√(1−x^2 ))))} .

2)changementtan(t2)=ugivef(x)=0111+x2u1+u22du1+u2=201du1+u2+2xu=201duu2+2xu+1letp(u)=u2+2xu+1Δ=x21case1Δ>0⇔∣x∣>1u1=x+x21andu2=xx21f(x)=201du(uu1)(uu2)=2u1u201{1uu11uu2}du=221x2[lnuu1uu2]01=11x2{ln1u11u2lnu1u2}=11x2{ln1+xx211+x+x21lnxx21x+x21}case2Δ<0⇔∣x∣<1p(u)=u2+2xu+x2+1x2=(u+x)2+1x2wedothechangementu+x=1x2αf(x)=201du(u+x)2+1x2=2x1x21+x1x21x2dα(1x2)(1+α2)=21x2[arctan(α)]x1x21+x1x2=21x2{arctan(1+x1x)arctan(x1x2)}.

Answered by Smail last updated on 02/Jan/19

let u=tan(t/2)⇒dt=((2du)/(1+u^2 ))  sint=((2u)/(1+u^2 ))  f(x)=2∫_0 ^1 (du/((1+u^2 )(1+((2xu)/(1+u^2 )))))  =2∫_0 ^1 (du/(u^2 +2xu+1))=2∫_0 ^1 (du/((u+x)^2 +1−x^2 ))  if −1<x≤1  f(x)=(2/(1−x^2 ))∫_0 ^1 (du/((((u+x)/(√(1−x^2 ))))^2 +1))  θ=((u+x)/(√(1−x^2 )))⇒dθ=(du/(√(1−x^2 )))  f(x)=(2/(√(1−x^2 )))∫_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 ))) (dθ/(θ^2 +1))  =(2/(√(1−x^2 )))[tan^(−1) (θ)]_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))   =(2/(√(1−x^2 )))(tan^(−1) (((1+x)/(√(1−x^2 ))))−tan^(−1) ((x/(√(1−x^2 )))))

letu=tan(t/2)dt=2du1+u2sint=2u1+u2f(x)=201du(1+u2)(1+2xu1+u2)=201duu2+2xu+1=201du(u+x)2+1x2if1<x1f(x)=21x201du(u+x1x2)2+1θ=u+x1x2dθ=du1x2f(x)=21x2x/1x2(1+x)/1x2dθθ2+1=21x2[tan1(θ)]x/1x2(1+x)/1x2=21x2(tan1(1+x1x2)tan1(x1x2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com