Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40621 by math khazana by abdo last updated on 25/Jul/18

let f(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ   1) calculate f(1)  2) find a simple form of f(x)  3) developp f at ontehr serie

letf(x)=0π2ln(1+xcosθ)dθ1)calculatef(1)2)findasimpleformoff(x)3)developpfatontehrserie

Answered by math khazana by abdo last updated on 27/Jul/18

1) f(1)=∫_0 ^(π/2) ln(1+cosθ)dθ = I and let   J = ∫_0 ^(π/2) ln(1−cosθ)dθ we have   I +J = ∫_0 ^(π/2) ln(1−cos^2 θ)dθ = ∫_0 ^(π/2) ln(sin^2 θ)dθ  =2 ∫_0 ^(π/2)  ln(sinθ)dθ =2(−(π/2)ln(2))=−πln(2)  I −J = ∫_0 ^(π/2) ln(((1+cosθ)/(1−cosθ)))dθ  = ∫_0 ^(π/2)  ln( ((2cos^2 ((θ/2)))/(2sin^2 ((θ/2)))))dθ = ∫_0 ^(π/2)  −2 ln(tan((θ/2)))dθ  =−2  ∫_0 ^(π/2)  ln(tan((θ/2)))dθ  =_((θ/2)=t)  −4 ∫_0 ^(π/4)  ln(tan(t))dt  ∫_0 ^(π/4)  ln(tant)dt =_(tant =u)   ∫_0 ^1   ln(u) (du/(1+u^2 ))  = ∫_0 ^1    ((ln(u))/(1+u^2 )) du =∫_0 ^1 ln(u) Σ_(n=0) ^∞  (−1)^n  u^(2n) )du  =Σ_(n=0) ^∞   (−1)^n  ∫_0 ^1  u^(2n)  ln(u)du =Σ_(n=0) ^∞  (−1)^n  A_n   A_n = [(1/(2n+1)) u^(2n+1) ln(u)]_0 ^1  −∫_0 ^1   (u^(2n) /((2n+1)))du  =−(1/((2n+1)^2 )) ⇒ ∫_0 ^(π/4)  ln(tant)dt = −Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))  =−λ_0    (the value of λ_0  is known) ⇒  I −J =4 λ_0   ⇒ I +J = −π ln(2) and  I −J =4λ_0   ⇒ 2I =−πln(2)+4λ_0  ⇒  I =−(π/2)ln(2) +2λ_0

1)f(1)=0π2ln(1+cosθ)dθ=IandletJ=0π2ln(1cosθ)dθwehaveI+J=0π2ln(1cos2θ)dθ=0π2ln(sin2θ)dθ=20π2ln(sinθ)dθ=2(π2ln(2))=πln(2)IJ=0π2ln(1+cosθ1cosθ)dθ=0π2ln(2cos2(θ2)2sin2(θ2))dθ=0π22ln(tan(θ2))dθ=20π2ln(tan(θ2))dθ=θ2=t40π4ln(tan(t))dt0π4ln(tant)dt=tant=u01ln(u)du1+u2=01ln(u)1+u2du=01ln(u)n=0(1)nu2n)du=n=0(1)n01u2nln(u)du=n=0(1)nAnAn=[12n+1u2n+1ln(u)]0101u2n(2n+1)du=1(2n+1)20π4ln(tant)dt=n=0(1)n(2n+1)2=λ0(thevalueofλ0isknown)IJ=4λ0I+J=πln(2)andIJ=4λ02I=πln(2)+4λ0I=π2ln(2)+2λ0

Answered by math khazana by abdo last updated on 27/Jul/18

2) we have f^′ (x)= ∫_0 ^(π/2)  ((cosθ)/(1+x cosθ))  =(1/x) ∫_0 ^(π/2)   ((xcosθ +1 −1)/(1+xcosθ))dθ (x≠0)   =(π/(2x)) −(1/x) ∫_0 ^(π/2)   (dθ/(1+x cosθ)) but  ∫_0 ^(π/2)    (dθ/(1+xcosθ)) =_(tan((θ/2))=t)    ∫_0 ^1   (1/(1+x((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1    ((2dt)/(1+t^2  +x(1−t^2 ))) = ∫_0 ^1    ((2dt)/(1+x +(1−x)t^2 ))  =(2/(1+x)) ∫_0 ^1    (dt/(1+((1−x)/(1+x))t^2 ))  if ∣x∣<1 chang.(√((1−x)/(1+x)))t=u  =(2/(1+x))  ∫_0 ^(√((1−x)/(1+x)))     (1/(1+u^2 )) (√((1+x)/(1−x)))du  = (2/(√(1−x^2 ))) arctan((√((1−x)/(1+x)))) ⇒  f^′ (x)= (π/(2x))  −(2/(x(√(1−x^2 )))) arctan((√((1−x)/(1+x))))⇒  f(x)=(π/2)ln∣x∣ −2 ∫    (1/(x(√(1−x^2 )))) arctan((√((1−x)/(1+x))))dx +c  be continued....

2)wehavef(x)=0π2cosθ1+xcosθ=1x0π2xcosθ+111+xcosθdθ(x0)=π2x1x0π2dθ1+xcosθbut0π2dθ1+xcosθ=tan(θ2)=t0111+x1t21+t22dt1+t2=012dt1+t2+x(1t2)=012dt1+x+(1x)t2=21+x01dt1+1x1+xt2ifx∣<1chang.1x1+xt=u=21+x01x1+x11+u21+x1xdu=21x2arctan(1x1+x)f(x)=π2x2x1x2arctan(1x1+x)f(x)=π2lnx21x1x2arctan(1x1+x)dx+cbecontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com