All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40621 by math khazana by abdo last updated on 25/Jul/18
letf(x)=∫0π2ln(1+xcosθ)dθ1)calculatef(1)2)findasimpleformoff(x)3)developpfatontehrserie
Answered by math khazana by abdo last updated on 27/Jul/18
1)f(1)=∫0π2ln(1+cosθ)dθ=IandletJ=∫0π2ln(1−cosθ)dθwehaveI+J=∫0π2ln(1−cos2θ)dθ=∫0π2ln(sin2θ)dθ=2∫0π2ln(sinθ)dθ=2(−π2ln(2))=−πln(2)I−J=∫0π2ln(1+cosθ1−cosθ)dθ=∫0π2ln(2cos2(θ2)2sin2(θ2))dθ=∫0π2−2ln(tan(θ2))dθ=−2∫0π2ln(tan(θ2))dθ=θ2=t−4∫0π4ln(tan(t))dt∫0π4ln(tant)dt=tant=u∫01ln(u)du1+u2=∫01ln(u)1+u2du=∫01ln(u)∑n=0∞(−1)nu2n)du=∑n=0∞(−1)n∫01u2nln(u)du=∑n=0∞(−1)nAnAn=[12n+1u2n+1ln(u)]01−∫01u2n(2n+1)du=−1(2n+1)2⇒∫0π4ln(tant)dt=−∑n=0∞(−1)n(2n+1)2=−λ0(thevalueofλ0isknown)⇒I−J=4λ0⇒I+J=−πln(2)andI−J=4λ0⇒2I=−πln(2)+4λ0⇒I=−π2ln(2)+2λ0
2)wehavef′(x)=∫0π2cosθ1+xcosθ=1x∫0π2xcosθ+1−11+xcosθdθ(x≠0)=π2x−1x∫0π2dθ1+xcosθbut∫0π2dθ1+xcosθ=tan(θ2)=t∫0111+x1−t21+t22dt1+t2=∫012dt1+t2+x(1−t2)=∫012dt1+x+(1−x)t2=21+x∫01dt1+1−x1+xt2if∣x∣<1chang.1−x1+xt=u=21+x∫01−x1+x11+u21+x1−xdu=21−x2arctan(1−x1+x)⇒f′(x)=π2x−2x1−x2arctan(1−x1+x)⇒f(x)=π2ln∣x∣−2∫1x1−x2arctan(1−x1+x)dx+cbecontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com